
Magnitude Simba SDK

Simba Client/Server Developer Guide
Version 10.1.17
November 2019

About This Guide

Purpose

This guide explains how to use Simba SDK to connect ODBC and JDBC applications to remote data
stores in networked environments.

Simba SDK includes networking components that enable communication over TCP/IP between client and
server machines. Client machines host the ODBC or JDBC connector, and server machines host a server
component containing your Data Store interface implementation (DSII). You can use the DSII that you
developed for a stand-alone connector and simply recompile it as a server.

Audience

The guide is intended for developers who have created a connector with the Simba SDK, and who want to
use Simba SDK to enable distributed deployments of the connector. This guide is also intended for end
users of the Simba SDK.

Knowledge Prerequisites

To use the Simba SDK, the following knowledge is helpful:

l Familiarity with the platform on which you are using the Simba SDK.
l Ability to use the data store to which the Simba SDK is connecting.
l An understanding of the role of ODBC or JDBC technologies and driver managers in connecting to a
data store.

l Experience creating and configuring ODBC or JDBC connections.

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and text that a user
types.

Monospace font indicates commands, source code or contents of text files.

NOTE:

Indicates a short note appended to a paragraph.

IMPORTANT:

Indicates an important comment related to the preceding paragraph.

Variables Used in this Document

The following variables are used in this document:

Variable Description

[DRIVER_NAME] The name of your connector, as used in Windows registry keys and
names of configuration files.

[INSTALL_DIR] Installation directory for the Simba SDK.

Table of Contents

About This Guide 2
Variables Used in this Document 3Table of Contents

Introducing Simba Client/Server 6
Deployment Options 6

The Modern Server-based DBMS 6

SimbaServer Solutions 7

SimbaClient/Server Architecture 7

Example: ODBC Client/Server Deployment 10
Build the Quickstart Connector as a SimbaServer 10

Configure the Server 12

Configure a DSN for the SimbaClient 13

Test the Client/Server Deployment 14

Working with Simba Client/Server 16
Development Strategy 16

Test Strategy 16

Building SimbaServer 17
Building SimbaServer on Windows 18

Building SimbaServer on Linux, Unix, and macOS 19

Configure SimbaServer as a Windows Service 20
Troubleshooting 21

Installing SimbaClient/Server 22
Gather the Required Files 22

SimbaServer Required Files 22

SimbaClient for ODBC Required Files 24

SimbaClient for JDBC Required Files 24

Visual C++ ODBC Redistributable Files 25

Installing SimbaServer on Windows 25

Installing SimbaClient for ODBC 26

Installing SimbaClient for JDBC 26

Testing the Client/Server Connection 27

Configuring SimbaServer 28
Command Line Configuration 28

Configuring SimbaServer on Windows 29

Configuring SimbaServer on Linux, Unix, and macOS 31

SimbaServer Configuration Properties 33

Auto-Reconnect (ODBC only) 45

Configuring SimbaClient for ODBC 47
Configuring SimbaClient for ODBC onWindows 47

Configuring SimbaClient for ODBC on Linux, Unix, and macOS 49

SimbaClient for ODBC Configuration Properties 51

Configuring SimbaClient for JDBC 66
Connection URL 66

Linking to the connector class 66

SimbaClient for JDBC Configuration Properties 66

Configuring Secure Sockets Layer (SSL) 75
Turning On SSL 75

Using SSL Certificates 75

Using a Trusted Key Store 75

Configuration Properties for SSL 75

Creating a Trusted Key Store for JDBC Client 76

Generating a Certificate Authority (CA) Certificate for Self-Signing 77

Generating an SSL Certificate with Verisign 78

Distributing SSL Certificates 79

Setting Properties to Control Logging 81
Example: Logging Properties for the QuickStart SimbaServer and ODBC Client 81

Contact Us 83

Kerberos Authentication Support 85
Example: Configuring Kerberos for C++ Servers 86

Example: Configuring Kerberos For Java DSII Connectors 91

Configuration Properties for Integrated Security 97

Frequently Asked Questions 99

Third-Party Trademarks 101

Introducing Simba Client/Server

SimbaServer turns your Data Store interface implementation (DSII) into a full-featured, remote Relational
Database Management System (RDBMS). You can use the same DSI implementation that you developed
for a stand-alone connector, and simply link in the SimbaServer libraries to create a database server. Your
new database server can be accessed by SimbaClients from any platform supported by the Simba SDK.

The SimbaClient uses the same Simba components as used in your stand-alone connector, so your
customers will see the same behavior whether they use the stand-alone connector or a client/server
solution.

Deployment Options

Both ODBC and JDBC clients are supported. The core SimbaServer code is implemented in C++. While
you can develop your DSII in Java or DotNet, it must connect to the C++ server core. You can develop
your DSII as follows:

l C++ SimbaServer SDK.
l Java SimbaServer SDK with a JNI bridge.
l DotNet SimbaServer SDK with Common Language Infrastructure (CLI).

You can deploy SimbaClient and SimbaServer on different platforms. For example, you can deploy
SimbaServer on Linux and SimbaClient on Windows. Or, you could deploy the client on 32-bit Windows
and the server on 64-bit Windows.

SimbaServer can also be loaded as a shared library, allowing you to embed it within your own application.

For more information on supported platforms, see Platform and Compiler Requirements in Simba SDK
Developing Connectors for SQL-capable Data Stores or Simba SDK Developing Connectors for Data
Stores Without SQL.

The Modern Server-based DBMS

Modern Relational Database Management Systems (RDBMSs) provide access for users via a remote
network protocol that runs on common networks such as TCP/IP. This provides nearly universal access to
the RDBMS since a well-designed database protocol will run on most networks, and virtually all user
machines are already networked. All major commercial RDBMSs work this way.

The figure below illustrates the flexibility of deployment with a server-based RDBMS:

Database access via a remote protocol also introduces tremendous flexibility in the choice of deployment
architectures, because a remote network protocol creates an interface that is independent of language,

operating system, word length, processor, and network. A well-designed remote protocol allows any two
machines to communicate. As a result, clients and servers can be deployed where they make the most
sense to your customers: servers can be deployed on high-powered, highly reliable machines, while
clients can be deployed to maximize user convenience.

SimbaServer Solutions

SimbaServer is most frequently used as a stand-alone executable, although it can be set up as a DLL or
shared object under another server. You must link SimbaServer to a DSI implementation before it can be
an executable. The DSI implementation can include Simba SQLEngine or not, and it can be written to
perform a wide range of functionality including SQL query processing with Simba SQLEngine,
concentrating client requests through one executable, aggregating data stores, or controlling data access
through role-based permissions. Likewise, a SimbaServer written in Java should include the JNI Server.
There are many possibilities for using SimbaServer as an intermediate processing step in a larger system.

SimbaClient/Server Architecture

The architecture of a complete Simba Client/Server solution is very similar to that of a stand-alone
connector. All of the same functionality is present, with the addition of the client/server functionality that
transports the DSI functionality across the network. The following diagram compares the stand-alone
Simba SQL Engine ODBC connector and an equivalent client/server solution:

The ODBC application and the driver manager are the same in both ODBC stacks.

Note:

There is only one driver manager in the Simba Client ODBC stack. Some ODBC client
architectures have two driver managers in the stack, which introduces the problem of keeping them
synchronized.

The top end of SimbaClient for ODBC uses the same SimbaODBC components as the top end of the
stand-alone connector. As a result, their response to ODBC function calls is the same.

The section of code that connects the ODBC functionality to the DSI API is the only place where the two
stacks differ:

l In the stand-alone connector, the SimbaODBC layer connects directly to the DSI API.
l In the client/server stack, the client/server connection mechanism connects the SimbaODBC code to
the DSI API.

The ODBC client component and the server component handle the network communication, effectively
projecting the DSI API across the network.

SimbaClient/Server Deployment Options

SimbaClient/Server is a collection of smaller components that allow remote access to your data store.
SimbaServer is most frequently used as a stand-alone executable, although it can be set up as a DLL or
shared object under another server. You must link SimbaServer to a DSI implementation in order to create
an executable. The DSI implementation can include Simba SQLEngine or not, and it can be written to
perform a wide range of functionality including SQL query processing with Simba SQLEngine,
concentrating client requests through one executable, aggregating data stores, or controlling data access
through role-based permissions. Likewise, a SimbaServer written in Java should include the JNI Server.
There are many possibilities for using SimbaServer as an intermediate processing step in a larger system.

Running SimbaClient and SimbaServer

When you start up your linked SimbaServer, it binds to a configurable port on your server machine and
listens for connection requests from SimbaClient connectors. Since all SimbaClient connector use the
same protocol, they are all handled in the same way by SimbaServer. When a SimbaClient connector
finds SimbaServer, it requests a connection. With a successful connection, the SimbaClient and
SimbaServer begin a conversation using the SimbaClient/Serverr protocol. This is a layered protocol
designed for clients making remote data queries and optimized for transmitting the result sets back to the
client. It is independent of the standard interface used by the user application.

SimbaServer is designed to optimize use of shared server resources, while SimbaClientis designed to
optimize the responsiveness of the application to give the best experience to the user. The protocol
parameters are configurable in case the default parameters do not provide the best performance for your
circumstances.

Reusing your DSI Implementation

One of the important design features of SimbaServer is that it links downward to exactly the same DSI
implementation as SimbaODBC, which enables it to serve as a simpler development environment than
SimbaServer. This means that you can first develop and test your DSI implementation as a local stand-
alone ODBC connector using SimbaODBC. This is a simpler initial environment than developing using
SimbaServer. When your new DSI implementation is performing to your satisfaction, you can link it to
SimbaServer and begin testing it in a remote way. If you know the state of the logic and performance of the
DSI implementation before introducing client/server, you can reduce your investigation time and
debugging costs.

SimbaEngine contains a SimbaClient for ODBC and a SimbaClient for JDBC that provide direct access to
SimbaServer.

SimbaClient for ODBC

SimbaClient for ODBC is an ODBC connector DLL or shared object that can connect to SimbaServer. It
includes SimbaODBC and a DSI implementation that communicates via the Simba Client/Server protocol
to SimbaServer. Since any SQLEngine in the stack will be on the server side, there is no need for Simba
SQLEngine in this connector. This is a completely generic ODBC connector that, when queried, reports
the capabilities of the database that is connected to SimbaServer.

You do not need to modify the ODBC connector.

SimbaClient for JDBC

SimbaClient for JDBC is a JDBC connector packaged as a Jar file so you can install it in an end user’s
client-side Java Run Time Environment. SimbaClient for JDBC includes the equivalent of SimbaODBC
and custom Java code that communicates via the Simba Client/Server protocol with SimbaServer.

You do not need to modify the JDBC connector.

Example: ODBC Client/Server Deployment

This example demonstrates how build the C++ Quickstart sample connector as a SimbaServer, then
deploy it with the ODBC client in a client/server configuration on a single Windows machine. You can use
this information to understand the basic principles of ODBC client/server deployment, then use the
information in the rest of this guide to deploy your own connector in a distributed deployment (with the
client and server components on different machines), on the platform of your choice.

Build the Quickstart Connector as a SimbaServer

You can rebuild the Quickstart or Ultralight sample as a SimbaServer. You can also rebuild your own DSII
as a SimbaServer. The SimbaServer contains the DSI implementation (DSII) and will handle accessing
the data store.

The following instructions use the Quickstart connector as an example, but you can also use the Ultralight
connector.

To build the Quickstart connector as a SimbaServer on Windows:

1. Open the VisualStudio project for Quickstart (for example, QuickstartDSII_vs2013.sln,
depending on the version of Visual Studio) at
[INSTALL_DIR]\SimbaEngineSDK\10.1\Examples\Source\Quickstart\Source.

2. Select the bitness (Win32 or x64), then select a server build configuration, for example:
l Debug_Server

l Or, Debug_MTDLL_Server
3. Build the project.

The SimbaServer executable, QuickstartDSIIServer<BITS>.exe, is built. By default the executable
is built to the following location:

[INSTALL_
DIR]\SimbaEngineSDK\
10.1\Examples\Source\Quickstart\Bin\<BUILD>\<RELEASE|DEBUG><CONFIGURATION>,
where

l <BUILD> is a combination of your operating system, machine bitness, and compiler
l <RELEASE|DEBUG> is release or debug
l CONFIGURATION> is mt if you select MTDLL as the solution configuration, otherwise md

For example:

C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\Quickstart\Bin\Windows_
vs2013\debug32md\QuickstartDSIIserver32.dll

To build the Quickstart connector as a SimbaServer on Unix and Linux:

The sample connectors included with the Simba SDK are installed in the folder [INSTALL_
DIR]/SimbaEngineSDK/10.1/Examples. The sample connectors include sample makefiles.

In the following instructions, replace [INSTALL_DIR] with the Simba SDK installation directory, for
example /Library/Simba_XCode7.

1. Set the SIMBAENGINE_DIR environment variable:
export SIMBAENGINE_DIR=[INSTALL_
DIR]/SimbaEngineSDK/10.1/DataAccessComponents

2. Set the SIMBAENGINE_THIRDPARTY_DIR environment variable:
export SIMBAENGINE_THIRDPARTY_DIR=[INSTALL_
DIR]/SimbaEngineSDK/10.1/DataAccessComponents/ThirdParty

3. Change to the following directory:
[INSTALL_DIR]/SimbaEngineSDK/10.1/Examples/Source/Quickstart/Source

4. Type ./mk.sh MODE=debug BUILDSERVER=1 to run the makefile for the debug server target.

This script calls the sample makefile, which automatically detects the required settings based on
your operating system, machine bitness, and compiler.

The resulting library, QuickstartServer<BITNESS>.so, is put in the following directory:
[INSTALL_
DIR]
/SimbaEngineSDK/
10.1/Examples/Source/Quickstart/Bin/<BUILD>/<RELEASE|DEBUG><BITNESS>

Where:

l <BUILD> is a combination of your operating system, machine bitness, and compiler
l <RELEASE|DEBUG> is either release or debug
l BITNESS is 32, 64, or 3264.

Example: Unix and Linux
[INSTALL_DIR]/SimbaEngineSDK/10.1/Examples/Source/Quickstart/Bin/Linux_x86_
gcc/debug64/QuickstartServer.so

Example: macOS

[INSTALL_DIR]/SimbaEngineSDK/10.1/Examples/Source/Quickstart/Bin/Darwin_x86_
Xcode7/debug64/QuickstartServer64.dylib

Configure the Server

Set the configuration properties as described in the table below. This configures your SimbaServer for
communication with the SimbaClient on the same machine.

Use one of the following Windows registry keys to set server configuration properties:

l HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Server for 32-bit
servers on 64-bit machines

l OR, HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Quickstart\Server for all other deployments.

Property Value Description

DBF

[INSTALL_DIR]
\SimbaEngineSDK\10.1\
Examples\Databases
\Quickstart

Path to the text files used as a data store by
the Quickstart connector.

Note:

DBF is only used by the
Quickstart connector. Your
server does not need this value
to be set.

DriverLocale en-US Set the connector locale to US English.

ErrorMessages
Path

[INSTALL_
DIR]\SimbaEngineSDK\10.1\
DataAccessComponents\
ErrorMessages

Error messages are read from this
directory.

ListenAddress ::1

In this example, the client and server are
installed on the same machine, so the
ListenAddress is set to localhost. (By
default, IPv6 is used so localhost is defined
as ::1.)

Property Value Description

ListenPort 1543 (or any unused port)
Specify the port on which your new
SimbaServer will listen to requests from the
SimbaClient.

Once the server properties are configured, you can start the server.

To start the SimbaServer:

Double-click QuickstartDSIIServer.exe.

Configure a DSN for the SimbaClient

The SimbaODBCClientDSII DSN is installed with the Simba SDK. We will modify this DSN to work with the
sample SimbaServer. When you are ready to configure your own DSN:

l You can use the SimbaODBCClientDSII DSN as a starting point, or you can create your own from
scratch.

l We recommend that you use the ODBC Data Sources UI to configure the DSN, rather than editing
the registry directly.

l SeeConfiguring SimbaClient for ODBC on page 47 for all configuration properties.

To modify the SimbaODBCClientDSII DSN:

1. Open Administrative Tools > Data Sources (ODBC), then select the System DSN tab.
2. Select SimbaODBCClientDSII then click Configure.
3. Enter the following information:

Property Description

Data Source Name

Enter a name for the data source. Your customers will see this
name, but it does not have to match another setting.

Description Enter a DSN description. Your customers will see this
description, but it does not have to match another setting.

Server IP ::1 (This defines localhost for IPv6)

Property Description

Server Port 1543 (this must match the server's ListenPort)

Idle Timeout 0

Login Timeout 60

Query Timeout 0

4. Click OK, and then click OK.

The SimbaClient DSN is configured. You can see the configuration information in the Windows registry at:

l HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\[Data Source Name]
l Or, HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBC.INI\[Data Source
Name] for 32-bit connectors on 64-bit machines.

Note:

The ODBC Data Sources tool sets some additional configuration values.

Test the Client/Server Deployment

While you can use any ODBC application to test your deployment, this section explains how to test the
deployment using ODBC Test, which is included with the Microsoft Data Access Components Software
Development Kit. You can download this software from https://www.microsoft.com/en-
ca/download/details.aspx?id=21995.

Important:

The bitness of your ODBC Test application must match the bitness of the SimbaClient. You may
have to search for ODBC Test in the Windows programs and files search bar in order to find the
correct application. (For example, Windows may hide the 32-bit ODBC Test application on 64-bit
machines).

To test the client/server deployment:

1. Make sure that the SimbaServer executable is running.
2. Launch the ODBCTest application that matches the bitness of your SimbaClient.

3. Click to request a Full Connect.

https://www.microsoft.com/en-ca/download/details.aspx?id=21995
https://www.microsoft.com/en-ca/download/details.aspx?id=21995

4. Click the DSN you configured in Configure a DSN for the SimbaClient on page 13. For example,
SimbaODBCClientDSII.

5. Click OK. The connection is established and a message such as "Successfully connected to DSN
'SimbaODBCClientDSII'" appears.

6. Execute a SQL statement:
a. In the statement window (at the top), type SELECT * FROM EMP.

b. Select and to fetch and display the data.

The retrieved data is displayed, for example:

You have successfully built SimbaServer, configured the SimbaClient DSN, and deployed SimbaClient
and SimbaServer on the sameWindows machine.

Working with Simba Client/Server

To simplify development and make it easier to find and fix errors, we recommend an iterative approach to
developing Simba Client/Server.

Development Strategy

To build your own Client/Server solution, we recommend you follow the steps below:

1. Build the server version of the SimbaEngine Quickstart Connector example, as described in
Example: ODBC Client/Server Deployment on page 10.

2. Build your stand-alone ODBC connector and test it for correctness and reliability.
3. Rebuild your DSI implementation into a server, and test the client-server deployment. For more

information, see Building SimbaServer on page 17.

Test Strategy

Because the stand-alone connector and SimbaServer with the same DSI implementation are so similar,
you can use both of them tactically to reduce your testing complexity. Test the stand-alone connector first,
and debug and fix the problems you find there before testing the SimbaServer version. This ensures that
your DSI implementation is correct and reliable before you introduce the complexity of the client/server
components.

Another consideration is that a stand-alone connector built with your DSI implementation should deliver
exactly the same results as the SimbaServer version. Any differences point to an underlying problem that
you should investigate.

Building SimbaServer

The ODBC and JDBC clients can both use the same server. The clients are shipped by Simba
Technologies Inc., so you do not need to compile them.

To create a server from your DSI implementation, use the project files or make files included in the Simba
SDK to link your C++ DSII code with the server libraries.

Note:

The core SimbaServer code is implemented in C++. While you can develop your DSII in Java or
DotNet, you must connect to the C++ server core. You can develop your DSII by using the
following:

l C++ SimbaServer SDK.
l Java SimbaServer SDK with a JNI bridge.
l DotNet SimbaServer SDK with Common Language Infrastructure (CLI).

The server libraries are described below:

Windows library Linux, Unix, and macOS library Description

SimbaServer.lib libSimbaServer.a Library containing the server
functions.

CSCommon.lib libSimbaCSCommon.a Library containing code for client
interaction.

Windows library Linux, Unix, and macOS library Description

SimbaServerMain.lib libSimbaServerMain.a

Optional. Library containing
SimbaServer main() function.

Include this library if you want to use
Simba's main() function to create a
stand-alone server executable. If you
want to link SimbaServer in with your
own process, you do not need this
library.

Note:

For information on linking
SimbaServer with your own
process, contact Simba
support.

If you link with the SimbaServerMain library, SimbaServer will build as an executable (*.exe on
Windows). On Windows and Linux, Unix, and macOS you can run this executable from a user’s command
line. This makes it easy to start and stop the executable for testing.

Note:

When building the solution, keep the following best practices in mind:

l Build the solution as a server
l Clean the solution before building the solution

Building SimbaServer on Windows

In Visual Studio, use a server build configuration to build your connector, for example Debug_Server or
Debug_MTDLL_Server.

Note:

On Windows, you can also run the server executable as a service.

Building SimbaServer on Linux, Unix, and macOS

To build SimbaServer on Linux, Unix, and macOS platforms, set the environment variable BUILDSERVER
to exe. The sample makefile included with the Simba SDK supports building a SimbaServer.

Building an ODBC Connector as a Server

http://www.simba.com/blog/building-odbc-driver-server/

Configure SimbaServer as a Windows Service

You can run SimbaServer as a Windows service, and configure it to start automatically when Windows
starts. Your customers may prefer this configuration because your custom JDBC or ODBC connector
starts automatically when the machine restarts.

Note:

l Run all commands from a command line that has administrative privileges or is "Run as
Administrator" (for Windows Vista or later).

l These steps use the Quickstart connector as an example. Change "Quickstart" to the name
of your connector.

To configure the server to run as a service:

1. Ensure your DSIDriverFactory() implementation calls Simba::Server::SetServiceName
() with the name of the service. In the Quickstart sample connector, the service name is
“SimbaQuickstartService”.

2. Ensure the required DLLS are available on the machine where you are running the service, as
described in SimbaServer Required Files on page 22.

3. Open a command line with administrative privileges.
4. Navigate to the directory that contains QuickstartDSIIServer.exe.
5. Run the following from the command line:

sc create SimbaQuickstartService binpath= "<Full Path To Quickstart
Server>\QuickstartDSIIServer32.exe"

The SimbaQuickstartService is created.

Tip:

Your installer can configure the server to run as a service by executing the command line
described above.

6. View the new service in the Windows Services:

To start and stop the service using the command line:

1. To start the service, execute the following from a command prompt:
net start SimbaQuickstartService

2. To stop the service, execute the following from a command prompt: net stop
SimbaQuickstartService:

To uninstall the service:

Execute QuickstartDSIIServer.exe -Uninstall from a command prompt, or have your
installer execute the same command line.

Troubleshooting

If your service will not start:

l Ensure the required dependencies are included on the machine where the server is running. For
more information about required dependencies, see Gather the Required Files on page 22.

l Ensure you have used the correct service name in the command sc create <Service Name>.
This name must exactly match the service name specified in the call to
SimbaSettingReader::SetServiceName().

Installing SimbaClient/Server

This section describes how to create an installer to deploy SimbaServer and the SimbaClient(s) at your
customer’s site.

Installation on Windows typically requires an installer for the server executable and client libraries,
followed by client and server configuration. Installation on Linux, Unix, and macOS typically requires
shipping a .tar.gz file and a list of instructions.

The rest of this section assumes that you want to create an installer or installation package for your client
and server.

Gather the Required Files

The first step in developing your installation, whether creating an automatic installer or simply a .tar.gz
file, is to list and gather all the required files. This includes the following:

l SimbaServer required files, as described in SimbaServer Required Files on page 22
l SimbaClient required files, as described in SimbaClient for ODBC Required Files on page 24 or
SimbaClient for JDBC Required Files on page 24.

l Error message files.
l Localization files.

Important:

Some of the files for the server installation and the SimbaClient will be the same, particularly the
ICU translation libraries, the error messages and possibly the localization files. The same files may
be included in two different installers.

SimbaServer Required Files

SimbaServer Required Files for Windows

You need the following files to ensure that SimbaServer will work properly when installed on Windows at
your customer’s site:

Windows File Description

The server executable (.exe file).
Your new server executable with your DSI implementation.
For example, the Quickstart executable is named
QuickstartDSIIServer.exe.

sbicudt53_32.dll for 32-bit
or sbicudt53_64.dll for 64-bit

sbicuin53_32.dll for 32-bit
or sbicuin53_64.dll for 64-bit

sbicuuc53_32.dll for 32-bit
or sbicuuc53_64.dll for 64-bit

ICU utility libraries.

These libraries are in a subdirectory of

[INSTALL_DIR\SimbaEngineSDK\10.1\
DataAccessComponents\ThirdParty

libeay32.dll

ssleay32.dll

SSL utility libraries.

These libraries are in a subdirectory of

[INSTALL_DIR\SimbaEngineSDK\10.1\
DataAccessComponents\ThirdParty

Visual C++ ODBC redistributable files See Visual C++ ODBC Redistributable Files on page
25.

SimbaServer Required Files for Linux, Unix, and macOS

To ensure that SimbaServer will work properly when installed on Linux at your customer’s site, include all
the .so files from this directory:
[INSTALL_
DIR]
/SimbaEngineSDK/
10.1/DataAccessComponents/ThirdParty/icu/53.1.x/<BUILD>/<RELEASE|DEBUG>/lib

Where:

l <BUILD> is a combination of your operating system, machine bitness, and compiler
l <RELEASE|DEBUG> is either release or debug
l BITNESS is 32, 64, or 3264.

For example, on a Linux machine, using the GNU compiler and the release32 target, include all the .so
files from the following directory:

[INSTALL_
DIR]/SimbaEngineSDK/10.1/DataAccessComponents/ThirdParty/icu/53.1.x/Linux_
x86_gcc/release32/lib

SimbaClient for ODBC Required Files

You need the following files to ensure that SimbaClient for ODBC works properly when installed at your
customer’s site:

Windows File Description

SimbaClient.dll The standard SimbaClient ODBC connector.

SimbaClientConfig.cfg The ODBC configuration dialog. (Windows only).

SimbaClientConnectionDialog.dll The SQL connection configuration dialog. (Windows
only).

sbicudt53_32.dll for 32-bit
or sbicudt53_64.dll for 64-bit

sbicuin53_32.dll for 32-bit
or sbicuin53_64.dll for 64-bit

sbicuuc53_32.dll for 32-bit
or sbicuuc53_64.dll for 64-bit

ICU utility libraries.

libeay32.dll

ssleay32.dll
SSL utility libraries.

ClientMessages.xml

ODBCMessages.xml
Error messages.

Visual C++ ODBC redistributable files See Visual C++ ODBC Redistributable Files on page
25.

SimbaClient for JDBC Required Files

The JDBC client is deployed as a single JAR file, which is included with the Simba SDK. A different jar file
is provided for each version of JDBC. You will need the correct file to ensure that SimbaClient for JDBC
will work properly when installed at your customer’s site:

l SimbaJDBCClient_Release42.jar supports JDBC 4.2
l SimbaJDBCClient_Release41.jar supports JDBC 4.1
l SimbaJDBCClient_Release4.jar supports JDBC 4.0

Visual C++ ODBC Redistributable Files

SimbaClient for ODBC and SimbaServer required the Visual C++ redistributables. These system files are
distributed by Microsoft and are required by ODBC connectors and connections. SomeWindows
machines may have these files already installed, but in some cases the installer must install them.

Note:

If you have trouble connecting to ODBC data sources, ensure the Visual C++ ODBC redistributable
files are installed.

Microsoft licenses these files to be distributed and redistributed free of charge. You may install them on as
many machines as you want with no restriction.

You can download the package from Microsoft: https://support.microsoft.com/en-ca/help/2977003/the-
latest-supported-visual-c-downloads.

Installing SimbaServer on Windows

When you have gathered all the required files described in Gather the Required Files on page 22, you can
start to build your installer. This section describes the steps that the installer must perform.

To install SimbaServer:

1. Determine where you will install SimbaServer on the target machine. We recommend installing in its
own folder to prevent file collisions.

2. Copy all of the SimbaServer required files, listed in SimbaServer Required Files on page 22, to the
target folder. Most of these files will be used from this folder.

3. Create the registry entries for the configuration, as described in Configuring SimbaServer on page
28.

4. Start SimbaServer from the command line or by using the Start -> Run command.

Productizing Your Connector in Simba SDK Developing Connectors for SQL-capable Data Stores or
Simba SDK Developing Connectors for Data Stores Without SQL.

https://support.microsoft.com/en-ca/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-ca/help/2977003/the-latest-supported-visual-c-downloads

Installing SimbaClient for ODBC

You can install SimbaClient for ODBC either on the same machine as SimbaServer or on a different
machine. If you install both components on the same machine, the network software simply loops back to
the SimbaServer process and connect normally. This is a simpler setup for development and test than
using two machines.

To install SimbaClient for ODBC:

1. Determine where to install SimbaClient for ODBC on the target machine. We recommend installing
in its own folder to prevent file collisions.

2. Copy all of the SimbaClient required files, listed in SimbaClient for ODBC Required Files on page 24,
to the target folder.

3. On Windows, create the required registry entries. On other platforms, create the equivalent
configuration files.

For example registry settings, see the following files in [INSTALL_
DIR]\SimbaEngineSDK\10.1\Documentation\Setup:

l SetupSimbaClient-32on32.reg

l SetupSimbaClient-32on64.reg

l SetupSimbaClient-64on64.reg

Productizing Your Connector in Simba SDK Developing Connectors for SQL-capable Data Stores or
Simba SDK Developing Connectors for Data Stores Without SQL.

Installing SimbaClient for JDBC

You can install SimbaClient for JDBC either on the same machine as SimbaServer or on a different
machine. If you install both on the same machine, the network software will simply loop back to the
SimbaServer process and connect normally. This is a simpler setup for development and test than using
two machines.

To install SimbaClient for JDBC:

1. Copy the JDBC client JAR file, SimbaJDBCClient_Release[version].jar, to the required
location on the client machine. The JAR file must be in the classpath of the JDBC application.

2. Determine where you will install SimbaClient for JDBC on the target machine. It needs to be
accessible from the classpath of the JDBC application that will use it.

3. Copy the required JAR file or files, listed in SimbaClient for JDBC Required Files on page 24, to the
target folder.

The JDBC application will need to be configured to use the SimbaClient for JDBC.

Testing the Client/Server Connection

If you have successfully installed and started SimbaServer, you can test the connection from the client to
the server using a sample ODBC or a sample JDBC application. For an example of using a sample ODBC
application, see Test the Client/Server Deployment on page 14.

Configuring SimbaServer

SimbaServer configuration properties control functionality such as logging, security, and resource
management. This section explains how end users can configure SimbaServer to meet their needs.

SimbaServer functionality is the same on Windows and Linux, Unix, and macOS. The configuration
properties are the same on all platforms. The only difference is where the configuration properties are
stored.

Note:

l You can configure SimbaServer on the command line, through the Windows Registry (on
Windows), or through configuration files (Linux, Unix, and macOS). Command-line settings
take precedence.

l Logging properties cannot be set on the command line. To set logging properties, use the
Windows Registry on Windows platforms or the .ini files on non-Windows platforms.

Updates to SimbaServer in Simba SDK version 10.0

In the Simba SDK version 10.0, SimbaServer was rewritten to improve performance and to be self-tuning.
This allows it to maintain optimal performance while receiving large numbers of requests from the clients,
while reducing system resources when client requests are minimal. As a result, the SimbaServer
configuration is simplified and the number of configuration parameters are reduced.

Note:

If you are upgrading SimbaServer from an earlier version, your installer may want to map the
existing configuration values at the customer's site to the new configuration values, where
applicable.

Command Line Configuration

You can configure SimbaServer using the command line. If you set configuration properties on the
command line, they take precedence over properties set in configuration files or in the Windows Registry.

Use the following format to set SimbaServer properties on the command line:

MyServer.exe -[PROPERTY] [VALUE] -[PROPERTY] [VALUE]

Note:

Logging properties cannot be set on the command line. To set logging properties, use the
Windows Registry on Windows platforms or the .ini files on non-Windows platforms.

Example:
QuickJsonJNIDSIServer64.exe -ListenPort 1200

Configuring SimbaServer on Windows

OnWindows, the configuration information is stored in the registry under the following key:

l [Registry_Root]\SOFTWARE\Simba\Quickstart\Server
l Or (for the 32-bit SimbaServer on a 64-bit machine)

[Registry_Root]\SOFTWARE\Wow6432Node\Simba\Quickstart\Server

Where Registry_Root is one of the following;

l HKEY_CURRENT_USER
l Or, HKEY_LOCAL_MACHINE (recommended)

If you have configuration settings for SimbaServer under both keys, SimbaServer will stop looking after it
finds any settings under the HKEY_CURRENT_USER key and will not look for any settings under the
HKEY_LOCAL_MACHINE key.

We recommend that you create your configuration settings in the HKEY_LOCAL_MACHINE key for the
following reasons:

l If you run SimbaServer as a Windows service, it will run by default under the System user ID. It is
difficult to configure HKEY_CURRENT_USER registry values under the System user ID and while
this difficulty can be solved in different ways, it is easier to avoid it completely. It is much easier to
configure the values under the HKEY_LOCAL_MACHINE key, which is visible to all users.

l If your primary configuration is under the HKEY_LOCAL_MACHINE key, you can do testing under a
user ID and create an overriding configuration in the HKEY_CURRENT_USER key of that user.
This avoids having to change the HKEY_LOCAL_MACHINE key configuration until you know
exactly what you want to do, and all other users IDs, including the System user ID, still see only the
HKEY_LOCAL_MACHINE key configuration.

Configuring for DotNet

If you are building the connector using the DotNet framework, you will also need to take the following steps
to configure the connector:

1. Use GAC to add the DotNetQuickstartDSII.dll.
2. In the registry, check the following settings:

l Under ODBC.INI > SimbaODBCClientDSII
l Under Simba > DotNewQuickstart > Server

3. Start the server by running QuickstartCLIDSIServer64.exe in the build folder.
4. From the Start menu, go to ODBC Data Sources.

Note:

Make sure to select the ODBC Data Source Administrator that has the same bitness as the
client application you are using.

5. Find the SimbaODBCClientDSII DSN, and click Configure.
6. Click Options > Add.
7. In the Key field, type DBF
8. In the Value field, type the path to where the database is stored.
9. Click OK > OK.
10. To test the connection, click Test. Review the results as needed, and then click OK.

Rebranding configuration subkeys

To rebrand your version of the SimbaServer, you can change the location of server configuration
properties in the Windows Registry. By default, SimbaServer uses the following subkey for its
configuration settings:

l SOFTWARE\Simba\Quickstart\Server
l Or (for the 32-bit SimbaServer on a 64-bit machine)
SOFTWARE\Wow6432Node\Simba\Quickstart\Server

You can change Simba\Quickstart to your own company and connector name by using
SimbaSettingReader::SetConfigurationBranding().

Example:

Suppose you want to set the subkey for configuration settings to the following:

HKEY_LOCAL_MACHINE\SOFTWARE\AceData\MyDriver

You would use the following method call:
SimbaSettingReader::SetConfigurationBranding("AceData\\MyDriver")

Configuring SimbaServer on Linux, Unix, and macOS

On Linux, Unix, and macOS, the configuration information for servers is stored in a configuration file. By
default, this file is named simbaserver.ini and is located in the directory containing the server
executable.

You can also use an environment variable to override the name and location of the configuration file. By
default, SimbaServer uses the configuration environment variable SIMBAINI. For example, if you set
SIMBAINI to /var/lib/mydata/AceDataConfig.ini, SimbaServer will read configuration
information from the file /var/lib/mydata/AceDataConfig.ini and ignore configuration
information in the file simbaserver.ini.

Note:

l If the configuration environment variable is set, SimbaServer ignores the default
configuration file. Customers can use the configuration environment variable to set the
location of the configuration information at install time.

l If the configuration environment variable is not set, SimbaServer uses the default
configuration file.

You can change the name of the default configuration file and the configuration environment variable.

Renaming the default configuration file with SetConfigurationBranding()

By default, SimbaServer looks for configuration information in a file named simbaserver.ini in the
directory containing the server executable.

Note:

If customers set a value for the configuration environment variable before starting SimbaServer,
the default configuration file is ignored.

To change the name and location of the default configuration file, use:

SimbaSettingReader::SetConfigurationBranding([arg1])

where [arg1] is either:

l The path and file name of the configuration file.
l Or, the file name of the configuration file.

If the path is not specified, SimbaServer will look in the directory containing the server executable.

You can specify the following values for the path:

l $HOME

SimbaServer will look for the configuration information in the user's home directory. It expects the file
name to be preceded with a period (.).

For example, calling SimbaSettingReader::SetConfigurationBranding
(“$HOME\my_driver.ini”)

tells SimbaServer to look in the user's home directory for the file .my_driver.ini

Note:

SimbaServer will expect the configuration file in the user's home directory to start with a period, for
example .my_driver.ini, even though you did not specify a period in the file name.

l $ETC

SimbaServer will look for the configuration information in the /etc directory. (It does not expect the file
name to be preceded with a period (.)).

l Any valid path, for example /var/lib/mydata/.

Example:

To tell SimbaServer to look for configuration information in the file /opt/AceData/lib/my_
driver.ini:
SimbaSettingReader::SetConfigurationBranding
(“/opt/AceData/lib/my_driver.ini”);

To tell SimbaServer to look for configuration information in the file my_driver.ini in the default
directory:
SimbaSettingReader::SetConfigurationBranding
(“my_driver.ini”);

To tell SimbaServer to look for configuration information in the file .my_driver.ini in the user's home
directory:
SimbaSettingReader::SetConfigurationBranding
(“$HOME\my_driver.ini”);

Renaming the configuration environment variable with
SetUnixConfigEnvVariable()

By default, SimbaServer looks in the environment variable SIMBAINI to find the name and location of the
configuration file. To change the name of this environment variable, use:

SimbaSettingReader::SetUnixConfigEnvVariable([arg1])

where [arg1] is the name of the environment variable.

Example

Suppose you configure both the default configuration file and the configuration environment variable:
SimbaSettingReader::SetConfigurationBranding(“/opt/AceData/lib/my_
driver.ini”);
SimbaSettingReader::SetUnixConfigEnvVariable("AceDataConfig");

If customers install your SimbaServer and do not set the AceDataConfig environment variable, then
SimbaServer reads configuration information from /opt/AceData/lib/my_driver.ini.

Later, suppose customers set the environment variable AceDataConfig:
export AceDataConfig="/usr/etc/acedata.ini"

After restarting SimbaServer, configuration information is read from /usr/etc/acedata.ini.

simbaserver.ini format

The simbaserver.ini file contains the section name [Server]. This section contains the keyword and
value for each set of options. The keyword and value are of the form keyword=value. The section ends
with end of the file.

For example, set the logging level as follows:

Example:
[Server]
LogLevel=LOG_OFF
<eof>

SimbaServer Configuration Properties

See Configuring SimbaServer on Windows on page 29 for the location of these properties in the Windows
registry, or Configuring SimbaServer on Linux, Unix, and macOS on page 31 for the location of these
properties in the configuration files.

These properties can also be entered on the command line.

Note:

As of Simba SDK version 10.0, all configuration properties are stored in one section called Server.
In previous releases, the configuration properties were divided into the sections Admin, Buffers,
Network and Threads.

This table summarize the configuration properties. Detailed descriptions are provided in following tables.

Note:

For properties that list a maximum value of UINT_MAX, this equals a value of
232-1.

Keyword Description

IdleTimeout Connection idle timeout period.

ListenAddress Bind the SimbaServer instance to a fixed IP address.

ListenPort The local port for SimbaServer to bind to.

MaxConnections The maximum number of connections allowed.

MaxWorkerThreads Maximum number of active concurrent connections.

MinWorkerThreads Number of Worker Threads created at startup.

ServerNameList The hostname(s) or IP addresses of the machine where the
SimbaServer is running.

ConnStmtLimit Maximum number of simultaneous statements the server allows on
any given connection.

Logging configuration properties

LogLevel Controls the granularity of the messages and events that are logged.

LogPath Specifies the directory where the log files are created.

LogFileSize The size of each log file. When the maximum size of the file is reached,
a new file is created.

LogFileCount The number of log files to create.

Secure socket layer (SSL) properties

SslCertfile The SSL certificate file to use with SSL secure connections.

Keyword Description

SslKeyFile The SSL private key file to use with SSL secure connections.

UseSsl Enable SSL encryption for the connection between SimbaClient and
SimbaServer.

SimbaServerMain properties

Help Windows only. Print a listing of the command-line options.

daemon Not available on Windows. Instruct the server to run in the background.

StopEvent Windows only. Specify a win32 event that can signal the server to shut
down.

General Configuration Properties

ConnStmtLimit

Required No

Range
0 - UINT_MAX

Set to 0 for unlimited.

Default
value 0 (No limit)

Example connstmtlimit=10

Comment The maximum number of simultaneous statements that the server allows on any given
connection.

IdleTimeout

Specifies connection idle timeout period.

Required No

Range
0 – UINT_MAX

Set to 0 for no timeout.

Default
value 86400 (24 hours)

Example IdleTimeout=86400

Comment

The duration in seconds that a connection can remain idle, with no communication from
a client, before SimbaServer disconnects it. Use this parameter to prevent network
interruptions and other connection errors from consuming SimbaServer resources.

Note:

l The server IdleTimeout property and the ODBC client IdleTimeout on page
56 property have the same name, but are different properties.

l For more information on timeout behavior, see How does timeout work?
on page 99

ListenAddress

Binds the SimbaServer instance to a fixed IP address.

Required No

Range Any valid IP address or hostname, or empty string.

Default
value Empty string.

Example ListenAddress=192.168.0.2

Comment

This keyword restricts the server so it accepts TCP/IP connections only on the specified
IP address. This is useful on machines with multiple IP addresses (for example,
machines with multiple NICs), or to ensure that SimbaServer binds to the expected IP
address.

If ListenAddress is not specified, SimbaServer will do the following:

Use gethostname() to get the fully qualified host name of the current machine.

Use getaddrinfo() to resolve that name to an IP address.

Bind to the resulting address.

ListenPort

The local port for SimbaServer to bind to.

Required No

Range 0-65535 (TCP/IP port number range.)

Default
value 1543

Example ListenPort=1583

Comment

This keyword specifies the port to which the server will bind and listen for TCP/IP
connection requests. The range of the value is 0-65535.

If you do not set this value, SimbaServer will use the default port 1543.

Note:

The port 1543 is registered to Simba Technologies.

MaxConnections

Specifies the maximum number of total connections.

Required No

Range 0 - UINT_MAX

Default
value 512

Example MaxConnections=256

Comment

This is the total number of connections that are permitted. Set to 0 for unlimited
connections.

MaxConnections includes both active and idle connections. Once this maximum
number of connections is reached, subsequent connection requests will wait until one of
the existing connections is disconnected. Refer to MaxWorkerThreads for the
maximum number of active concurrent connections. If you expect a large number of
users to access your server, this value should be set to a higher number.

MaxWorkerThreads

Specifies the maximum number of active concurrent connections.

Required No

Range 0 - UINT_MAX

Default
value 100

Example MaxWorkerThreads=32

Comment

The maximum number of concurrent active connections that are permitted. Set to 0 for
unlimited worker threads.

Since each connection, when active, requires a worker thread to process its requests,
the maximum number of worker threads is equal to the maximum number of active
concurrent connections.

When this maximum number is reached, an active connection will wait until one of the
active connections has had its requests serviced. Its worker thread will then be freed for
use by this active connection.

Note:

This property is NOT the maximum number of connections allowed – i.e. there
can be concurrent idle connections. Idle connections do not require the use of a
worker thread.

If you expect a large number of concurrently active users, this number should be set
higher.

Refer to MaxConnections for the maximum total number of connections permitted.

MinWorkerThreads

Specifies the number of Worker Threads created at startup.

Required No

Range 0-65535 worker threads

Default
value 10

Example MinWorkerThreads=50

Comment

The number of worker threads that SimbaServer will create before starting up the
server. SimbaServer will not allow the number of worker threads in the thread pool to
dip below this number. Each active connection uses one worker thread to process its
requests.

ServerNameList

The hostname(s) or IP addresses of the machine where the SimbaServer is running.

Required

No, but recommended.

If not supplied, SimbaServer will attempt to use DNS to discover the hostname of the
machine on which it is running.

Default value None

Example ServerNameList = Server1,Server2

Comment

This property ensures the server can accurately communicate the hostname(s) and IP
address(es) for the machine on which it is running. This avoids error in cases where
more than one hostname is mapped to a single IP address, or the server is running
behind a NAT-enabled firewall.

Logging Configuration Properties

For more information on logging, see Setting Properties to Control Logging on page 81.

Note:

Logging properties cannot be set on the command line. To set logging properties, use the
Windows Registry on Windows platforms or the .ini files on non-Windows platforms.

LogLevel

Controls the granularity of the messages and events that are logged.

Required No

Allowed
values See Comment.

Default
value

LOG_OFF

Example LogLevel=LOG_ERROR

Comment

With this keyword, you can control the amount of log output by controlling the kinds of
events that are logged.

Possible values (case sensitive):

l 0 or LOG_OFF: no logging occurs
l 1 or LOG_FATAL: only log fatal errors
l 2 or LOG_ERROR: log all errors
l 3 or LOG_WARNING: log all errors and warnings
l 4 or LOG_INFO: log all errors, warnings, and informational messages
l 5 or LOG_DEBUG: log method entry and exit points and parameter values for
debugging

l 6 or LOG_TRACE: log all method entry points

LogPath

Specifies the directory where the log files are created.

Required No

Allowed
values Valid directory path, or unspecified.

Default
value Unspecified. This stores log files in the current working directory.

Example LogPath="C:\Simba Technologies\Temp"

Comment

If this value is not set, the log files are written to the current working directory of the
SimbaServer.

Note:

The current working directory for SimbaServer running as a service and
SimbaServer running as an executable is different.

LogFileSize

Specifies the size, in bytes, of each log file.

Note:

You can use LogFileSize and LogFileCount to enable automatic cleanup of log files. When
one log file reaches the size specified by LogFileSize, a new log file is created. When the
number of log files reaches the limit specified by LogFileCount, the first log file is deleted when
another log file is created.

Required No

Allowed
values

The Simba SDK will accept any positive integer. The maximum size of a file depends
on the host machine's specifications.

Default value 20971520 bytes

Example LogFileSize="30000000"

Comment When the maximum size of the log file is reached, another log file will be created.

LogFileCount

Specifies the number of log files to create.

Required No

Allowed
values

The Simba SDK will accept any positive integer. The maximum number of files
depends on the host machine's specifications.

Default value 50

Example LogFileCount=100

Comment When the maximum number of log files has been created, the oldest file will be deleted
and a new one created.

SSL Configuration Properties

For more information on configuring SSL, see Configuring Secure Sockets Layer (SSL) on page 75.

UseSsl

This setting allows the connection between the SimbaClients and SimbaServer to use Secure Sockets
Layer (SSL) encryption.

Note:

You must configure SSL on both the SimbaServer and the Simba SDK

Required Yes, if UseSsl is enabled on the client.

Allowed values Disabled, Enabled, Required

Default value Disabled

Example UseSsl=Enabled

SslCertfile

Specifies the SSL certificate file to use with SSL secure connections.

Required Yes, when UseSslis Enabled or Required.

Data type String

Range Valid absolute or relative directory path to the SSL certificate file.

Default
value None

Example SslCertFile=C:\SampleServerCertificate.pem

Comment
This keyword specifies the full or relative path to the SSL certificate file to use with SSL
secure connections. Note that the server will use this information only when you turn on
SSL security with the UseSsl keyword.

SslKeyFile

Specifies the SSL private key file to use with SSL secure connections.

Required Yes, when UseSslis Enabled or Required.

Data type String

Range Valid absolute or relative directory path to the SSL server key file.

Default
value None

Example SslKeyFile=C:\SampleServerKey.pem

Comment
This keyword specifies the full or relative path to the SSL private key file to use with SSL
secure connections. Note that the server will use this information only when you turn on
SSL security with the UseSsl keyword.

SimbaServerMain properties

These properties are available on the command line for SimbaServers that use the SimbaServerMain
library. They are not available in a configuration file. If you include SimbaServer in your own process and
implement your own main() function, these properties are not available.

Help

List and describe the command-line options.

Required No

Example
QuickstartDSIIServer.exe -Help

QuickstartDSIIServer.exe /Help

Comment This parameter does not take any arguments. The server will not start up when this
parameter is used, and will ignore all other arguments.

daemon

Instruct the server to run as a daemon (in the background without a terminal window).

Required No

Example QuickstartDSIIServer.so -daemon

Comment This parameter is not available on Windows.

StopEvent

Specify an event object that can signal the server to shut down.

Required No

Default
Value By default, no event is monitored.

Example QuickstartDSIIServer.exe -StopEvent NoLicenseAvailable

Comment
This parameter is available on Windows only. For more information on event objects,
see https://msdn.microsoft.com/en-
ca/library/windows/desktop/ms682655%28v=vs.85%29.aspx.

ReportListenAddresses

The file to write the listen addresses to, relative or absolute.

Required No

Default
Value N/A.

Example C:\[install dir]\logs\

Comment

If specified, the server will write the address or addresses it is listening on to the
specified file. The file will have the following format:

[IP] [Port]\\n\"

Auto-Reconnect (ODBC only)

You can configure SimbaServer to automatically reconnect to ODBC clients. This feature is only
supported where both the client and server are version 10.1.16 or later.

If any of the following conditions are true, the connector does not attempt to automatically reconnect a
socket that was forcibly closed:

https://msdn.microsoft.com/en-ca/library/windows/desktop/ms682655(v=vs.85).aspx
https://msdn.microsoft.com/en-ca/library/windows/desktop/ms682655(v=vs.85).aspx

l The connection is currently in the midst of a transaction.
l The socket currently has an active request on it. For this purpose, active means there is at least one
request which has been fully sent and either the request is not idempotent, or some but not all
responses for the request have been received by the client.

l Any statements on the connection are in the midst of an execution. This is distinct from the point
above since the client can appear idle when waiting for the application to provide some DATA-AT-
EXEC parameter data still in execution.

l Any statements on the connection have open cursors for which there still exists data to fetch from the
server, or there exist subsequent unfetched results for the current execution. There is no way to
ensure that any query issued is either idempotent or would return results in the same order. This
includes cursors for catalog functions such as SQLTables.

l Any statements are prepared.

To enable the auto-reconnect feature, the following configuration options must be set for the server via
Simba::DSI::ServerSemantics:

l Simba::DSI::ServerSemantics::GetDSIIType()
Assigns a GUID that uniquely identifies the DSII. This is not set by default, and must be set to use
Auto-Reconnect.

l Simba::DSI::ServerSemantics::GetDSIIVersion()
Retrieves a string that denotes the DSII version. This information must be identical on the new server
for auto-reconnect to succeed. Returns the value of the DSI_DRIVER_VER connector property by
default.

l Simba::DSI::ServerSemantics::GetDSIIConfig()
Retrieves a string that encodes the configuration of the DSII. Examples of this information could
include the DBF location, or the underlying ODBC connector type (for D2O), or the back-end server
being connected to. This information must be identical on the server being connected to for auto-
reconnect to succeed.

Configuring SimbaClient for ODBC

SimbaClient configuration properties control logging, server discovery, and security. Configuration
properties are the same on all supported platforms, but are configured in different ways as described in the
following sections.

For information on individual configuration properties, see SimbaClient for ODBC Configuration Properties
on page 51.

Configuring SimbaClient for ODBC on Windows

OnWindows, the SimbaClient configuration properties are stored in the Windows registry. There are three
registry locations where the different types of properties are stored:

Property Type Location

DSN

(Properties for configuring
the DSN, or connection
string).

HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBC.INI\[DSN name] for 32-bit clients on 64-
bit machines

Or, HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\[DSN
name]

Note:

DSN properties can also be stored under
HKEY_CURRENT_USER.

Driver

(Properties for configuring
the connector binary).

HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBCINST.INI\[Driver name] for 32-bit clients
on 64-bit machines

Or, HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\
[driver name]

Note:

Driver properties cannot be stored under HKEY_CURRENT_
USER.

Property Type Location

Simba Setting Reader

(Properties for configuring
logging).

HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\Simba\SimbaClient\Driver for 32-bit clients on 64-bit
machines

Or, HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\SimbaClient\Driver

Note:

Simba Setting Reader properties cannot be stored under HKEY_
CURRENT_USER.

Note:

You cannot change the location of ODBC client logging properties in the Windows Registry.

HKEY_LOCAL_MACHINE vs HKEY_CURRENT_USER

Properties stored under HKEY_LOCAL_MACHINE are system-wide and are visible to all users on the
machine. Properties stored under HKEY_CURRENT_USER are user-specifc, so they are visible to the
user currently logged in to the machine. Driver and Simba Setting Reader properties are located under
HKEY_LOCAL_MACHINE. DSN properties can be located under HKEY_LOCAL_MACHINE or HKEY_
CURRENT_USER.

Note:

Logging information is system-wide. All users on the same machine will have the same logging
level.

Using the configuration dialog

The Simba ODBC client connector, like most ODBC connectors, has a configuration DLL that allows you
to configure DSNs with a dialog rather than directly editing the Windows registry. Using the configuration
dialog is safer than editing the Windows registry because the logic in the dialog prevents you from saving
an inconsistent configuration. We recommend that you use the SimbaClient for ODBC configuration
dialog.

To use the SimbaClient for ODBC configuration dialog:

1. Ensure SimbaClient for ODBC is properly installed on your system.
2. Click Start > Control Panel > Administrative Tools > Data Sources (ODBC) to open the ODBC

Data Source Administrator.
3. Select type of DSN you want to configure: User DSN, System DSN, or File DSN.
4. Do one of the following:
5. l Click on Add… to create a new data source, then select SimbaODBCClientDSII from the list of

ODBC connectors.
l Or, select a DSN configured to use SimbaClient for ODBC, then click on Configure… .

6. The configuration dialog opens.
7. On the main tab of the configuration dialog, you will see several of the DSN configuration properties

such as Server IP and Server Port. All SimbaClient DSNs need these entries so they can connect to
SimbaServer.

8. If you click Option, Logging and Secondary Servers, you will be able to see all of the other
configuration properties used in the DSN.

9. To add a configuration keyword that does not have a corresponding UI element, click Options and
add the keyword to the Custom Property list.

Note:

Configuration properties that not have a corresponding UI element in the configuration dialog
are unlikely to be required by customers, but can be added by developers using the Custom
Property list.

10. Click OK.

The configuration properties are written to the registry.

Configuring SimbaClient for ODBC on Linux, Unix, and macOS

On Linux, Unix, and macOS, the SimbaClient configuration properties are stored in configuration files.
There are three files where the different types of properties are stored:

Property Type Location

DSN odbc.ini file

Driver odbcinst.ini file

Property Type Location

Simba Setting Reader simbaclient.ini file

DSN properties

The DSN definition is stored in a text file called odbc.ini. The driver manager that you are using on the
SimbaClient machine typically looks in the following locations for this file:

1. $ODBCSYSINI/odbc.ini
(Note that there is no leading period ".").

2. $HOME/.odbc.ini
>(Note the leading period "." in the name).

3. /etc/odbc.ini
(Note that there is no leading period ".").

The driver manager passes the configuration settings from this file to the SimbaClient.

Important:

Different driver managers may search different locations for the odbc.ini file. Use the correct
location for your chosen driver manager.

To configure the DSN, use a text editor to edit the odbc.ini (there is no configuration dialog for Linux,
Unix, and macOS).

In the odbc.ini file, each DSN has its own section that lists its configuration properties in the form
keyword=value. Each section starts with the DSN name in square brackets and ends with the title of the
next DSN or with the end of the file. For example:

[SimbaODBCClientDSII]
Description=Sample 32-bit SimbaEngine SimbaODBCClient DSII
Driver=[INSTALLDIR]SimbaEngineSDK/10.1/DataAccessComponents/Bin/Linux_
x86/libSimbaClient.so
Locale=en-US
SSLCACertFile=
[INSTALLDIR]SimbaEngineSDK/
10.1/Documentation/SSLCertificates/SampleCACertificate.pem
UseSsl=0
ServerList=127.0.0.1 1543

SimbaClient for ODBC Configuration Properties

All configuration properties are type String. See Configuring SimbaClient for ODBC onWindows on page
47 for the location of these properties in the Windows registry, or Configuring SimbaClient for ODBC on
Linux, Unix, and macOS on page 49 for the location of these properties in the configuration files.

The following table summarizes the configuration properties. Detailed descriptions are provided in
subsequent tables.

Note:

For properties that list a maximum value of UINT_MAX, this equals a value of
232-1.

Property Type Description

ConnectionDialog DSN, Driver, or
SimbaSettingReader The location of the connection dialog file.

Description DSN A brief, human-readable description of the
DSN.

Driver DSN or
Driver

In the connector configuration location,
Driver should contain the path to the
connector binary. In the DSN configuration
location, Driver could contain the path to
the connector binary, or it could contain the
connector entry in the registry.

Locale DSN The connection locale.

ServerList DSN A list of all servers (IP address and port
number) to connect to.

TransactionsSupported SimbaSetting
Reader

Overrides the value of DSI_DRIVER_
TRANSACTION_CAPABILITY_KNOWN
property to specify whether or not the
server is connecting to a data store that
supports transactions.

Property Type Description

Timeout properties

IdleTimeout DSN The time to wait for a response from the
server.

LoginTimeout DSN
The timeout, in seconds, to wait for a
response from the server when attempting
to log in.

QueryTimeout DSN Sets the value of SQL_ATTR_QUERY_
TIMEOUT, which is passed to the server.

Logging properties

LogLevel SimbaSetting
Reader

Controls the granularity of the messages
and events that are logged.

LogPath SimbaSetting
Reader

Specifies the directory where the log files
are created.

LogFileSize SimbaSetting
Reader

The size of each log file. When the
maximum size of the file is reached, a new
file is created.

LogFileCount SimbaSetting
Reader The number of log files to create.

Integrated security (single sign-on) properties

ServicePrincipalName DSN The service principal name for the server
with integrated security.

UseIntegratedSecurity DSN Indicates whether integrated security
(Kerberos) should be used.

Secure socket layer (SSL) properties

Property Type Description

AllowExpiredCert DSN Specifies whether the client will accept an
expired SSL certificate from the server.

AllowHostMismatch DSN
Specifies whether the client will accept a
hostname from the server that differs from
the one in the server's SSL certificate.

AllowSelfSignedCert DSN
Specifies whether the client accepts SSL
certificates from the server which are self-
signed.

SSLCACertfile DSN Location of the SSL certificate authority
certification file.

UseSsl DSN Enables SSL encryption for the connection
between SimbaClient and SimbaServer.

Auto-Reconnect properties

AutoReconnect DSN, Driver, or
SimbaSettingReader

Enables or disables auto-reconnect
feature.

AutoReconnectAttempts DSN, Driver, or
SimbaSettingReader

The maximum number of attempts the
client makes when trying to reconnect to
the server.

AutoReconnectCooldown DSN, Driver, or Sim-
baSettingReader

The number of seconds the client waits
between reconnection attempts.

General configuration properties

ConnectionDialog

The location of the connection dialog file.

Required Required only if the connection dialog is required.

Allowed
values Allowed characters for file path names. May differ by platform.

Default value [INSTALL_DIR]\ConnectionDialog.dll

Example
ConnectionDialog=C:\Simba
Technologies\InstallDir\ConnectionDialog.dll

Comment

You can use the ConnectionDialog.dll for a staged login when
you need to have the client and server have a short conversation
before connecting. The Client looks in ODBC.INI first, then
ODBCINST.INI, then under Simba Settings.

Description

A brief, human-readable description of the DSN.

Required No

Allowed
values Any alphanumeric characters.

Default value Sample SimbaODBCClient DSN

Example Description=Time system database – read-only.

Comment
This describes the DSN to users who are deciding which DSN to use.
Applications will usually display the description of the DSN to help the
user choose the correct one.

Driver

The location of the connector file.

Required No (but recommended)

Allowed
values Allowed characters for file path names. May differ by platform.

Default value None

Example Driver= C:\Simba Technologies\InstallDir\SimbaClient.dll

Comment The Driver keyword points to the location of the ODBC connector itself. This is not
always required as the location can be inferred, but we recommend you include it.

Locale

The connection locale.

Required No

Allowed
Values

Values are composed of a 2-letter language code (in lower case), and
an optional 2-letter country code (in upper case). If the country code is
specified, it must be separated from the language code by a hyphen
(-).

The language codes conform to the ISO639-2 specification:
http://www.loc.gov/standards/iso639-2/php/code_list.php

The country codes conform to the ISO3166-1 specification:
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm

Default value 0

Example Locale=fr-CA

Comment
If this value is set, it overrides the connector-wide locale. For
example, the connector-wide locale could be en-US. If the client
would prefer fr-CA, it can set the connection locale to fr-CA.

ServerList

A listing of all servers to connect to, including IP address and port number.

Required Yes

Range
l IP addresses: Any valid IP address.
l Ports: 0 - 65535

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm

Default value 127.0.0.1 1543 (loopback with default port)

Example ServerList=127.0.0.1 1543,192.168.0.1 1543

Comment

SimbaClient must be able to find SimbaServer on the network. This property enables server
discovery. SimbaClient will try to make a network connection to the servers in the order
specified until a connection is made.

The format is: <ip> <port>,<ip> <port>,…

TransactionsSupported

Overrides the value of DSI_DRIVER_TRANSACTION_CAPABILITY_KNOWN to specify whether or not
the server supports transactions.

Required No

Allowed val-
ues

l 0 or FALSE: the server does not support transactions
l 1 or TRUE: the server supports transactions

Default value 0 or FALSE: the server does not support transactions

Example TransactionsSupported=TRUE

Comment

This property overrides the server property DSI_DRIVER_TRANSACTION_
CAPABILITY_KNOWN, which specifies whether the DSII's IConnection
implementation knows whether or not transactions are supported, before the
connection is established.

For more information on DSI_DRIVER_TRANSACTION_CAPABILITY_KNOWN, see
DSIDriverProperties.h

Timeout properties

The value of LoginTimeout is used by the ODBC client. The values of IdleTimeout and QueryTimeout are
passed to the server, and you must implement any desired timeout behavior in your server's DSII. For
more information on timeout behavior, see How does timeout work? on page 99

IdleTimeout

Sets the value of SQL_ATTR_CONNECTION_TIMEOUT, which is passed to the server.

Required No

Range 0 – UINT_MAX seconds

Default value 0 (no timeout)

Example IdleTimeout=60000

Comment

You must implement any required idle timeout in your server DSII. Typically, this
covers any situation that requires a timeout and is not associated with query execution
or login. For more information on SQL_ATTR_CONNECTION_TIMEOUT, see
https://msdn.microsoft.com/en-us/library/ms713605(v=vs.85).aspx.

Note:

The ODBC client IdleTimeout property and the server IdleTimeout on page
35property have the same name, but are different properties.

LoginTimeout

The time, in seconds, to wait for a response from the server after a login request is made by the client.

Required No

Range 0 – UINT_MAX seconds

Default value 60

Example LoginTimeout=10

https://msdn.microsoft.com/en-us/library/ms713605(v=vs.85).aspx

Comment

A value of 0means no timeout.

The value of this property is used to set the value of SQL_ATTR_LOGIN_TIMEOUT.

Note:

l A log in timeout may occur earlier than the time specified by this value.
For example, if a DNS lookup failure occurs, the log in attempt times out
immediately.

l If additional servers are specified in ServerList, the client attempts to log
in to the other servers before timing out.

QueryTimeout

Sets the value of SQL_ATTR_QUERY_TIMEOUT, which is passed to the server.

Required No

Range 0 – UINT_MAX seconds

Default value 60

Example QueryTimeout=10

Comment
You must implement any required query timeout in your server DSII. Typically, this
means throwing an error if statements such as PREPARE, EXECUTE, or
EXECUTEDIRECT take longer than specified by SQL_ATTR_QUERY_TIMEOUT.

Logging properties

For more information on logging, see Setting Properties to Control Logging on page 81.

LogLevel

Controls the granularity of the messages and events that are logged.

Required No

Allowed
values See Comment.

Default
value

LOG_OFF

Example LogLevel=LOG_ERROR

Comment

With this keyword, you can control the amount of log output by controlling the kinds of
events that are logged.

Possible values (case sensitive):

l 0 or LOG_OFF: no logging occurs
l 1 or LOG_FATAL: only log fatal errors
l 2 or LOG_ERROR: log all errors
l 3 or LOG_WARNING: log all errors and warnings
l 4 or LOG_INFO: log all errors, warnings, and informational messages
l 5 or LOG_DEBUG: log method entry and exit points and parameter values for
debugging

l 6 or LOG_TRACE: log all method entry points

LogPath

Specifies where the log file is created.

Required No

Allowed
values Valid directory path, or unspecified.

Default value Unspecified

Example LogPath=C:\Simba Technologies\Temp

Comment If this value is not set, the log files are written to the current working directory of the
SimbaClient.

LogFileSize

Specifies the size, in bytes, of each log file.

Required No

Allowed
values

The Simba SDK will accept any positive integer. The maximum size of a file depends
on the host machine's specifications.

Default value 20971520 bytes

Example LogFileSize="30000000"

Comment When the maximum size of the log file is reached, another log file will be created.

LogFileCount

Specifies the number of log files to create.

Required No

Allowed
values

The Simba SDK will accept any positive integer. The maximum number of files
depends on the host machine's specifications.

Default value 50

Example LogFileCount=100

Comment When the maximum number of log files has been created, the oldest file will be deleted
and a new one created.

Integrated security (single sign-on) properties

For more information on configuring Kerberos, see Kerberos Authentication Support on page 85.

ServicePrincipalName

The service principal name for the server with integrated security.

Required Yes if UseIntegratedSecurity is True.

Allowed
values Any valid service principal name.

Default
value no default

Example ServicePrincipalName=<SPN of the server>

UseIntegratedSecurity

Indicates whether integrated security (single sign-on), should be used when the client establishes a
connection to the server. Kerberos authentication is used for integrated security.

Note:

You must configure UseIntegratedSecurity on both the SimbaServer and the SimbaClient in
order to use integrated security.

Required No

Allowed
values Disabled, Enabled, Required

Default
value

Disabled

Example UseIntegratedSecurity=Required

Comment

If enabled on the client and the server, integrated security will be used during
connection.

For a summary of the connection types that will be established based on the different client and
server settings, see Configuration Properties for Integrated Security on page 97.

Secure socket layer (SSL) properties

For more information, see Configuring Secure Sockets Layer (SSL) on page 75.

AllowExpiredCert

Specifies whether the client will accept an expired SSL certificate from the server.

Required No

Range Yes or No (also accepts 1 or 0)

Default value No

Example AllowExpiredCert=Yes

Comment When enabled, the client will accept an expired SSL certificate from the server.

AllowHostMismatch

Specifies whether the client will accept a hostname from the server that differs from the one in the server's
SSL certificate.

Required No

Allowed
values Yes or No (also accepts 1 or 0)

Default
value

No

Example AllowHostMismatch=Yes

Comment When enabled, the client will accept a different hostname from the server than the one
specified in the server’s SSL certificate.

AllowSelfSignedCert

Specifies whether the client accepts SSL certificates from the server which are self-signed.

Required No

Allowed
values Yes or No (also accepts 1 or 0)

Default
value

No

Example AllowSelfSignedCert=Yes

Comment When enabled, the client accepts SSL certificates from the server which are self-signed
(as opposed to being signed by a certificate authority).

SSLCACertfile

Location of the SSL certificate authority certification file for SimbaClient to use when encrypting SSL
communication with SimbaServer.

Required Yes if UseSsl is enabled.

Allowed
values Disabled, Enabled, Required

Default
value

Disabled

Example
SSLCACertFile=C:\Simba Technologies\SimbaEngineSDK\10.1
\Documentation\SSLCertificates\
SampleCACertificate.pem

UseSsl

This setting allows the connection between the SimbaClients and SimbaServer to use Secure Sockets
Layer (SSL) encryption.

Note:

You must configure SSL on both the SimbaServer and the SimbaClient in order to establish a
secure connection. See Configuration Properties for SSL on page 75.

Required Yes, if UseSsl is enabled on the Server.

Allowed values Disabled, Enabled, Required

Default value Disabled

Example UseSsl=Enabled

Auto-Reconnect properties

AutoReconnect

Specifies whether the client will attempt to automatically reconnect to the server if the connection is closed
or lost.

Required No

Allowed values N or Y

Default value N

Example AutoReconnect=N

Comment

This feature also requires configuration on the server. For more
information, see SimbaServer Configuration Properties on page 33.

This property can be set at multiple levels that override each other.
Connection String overrides the DSN or SimbaSettingReader, and the
DSN overrides the SimbaSettingReader.

AutoReconnectAttempts

Specifies the maximum number of attempts the client makes to reconnect to the server.

Required No

Allowed values 0 – UINT_MAX

Default value 1

Example AutoReconnectAttempts=5

Comment

If this property is set to 0 the client makes an unlimited number of
reconnection attempts.

This property can be set at multiple levels that override each other.
Connection String overrides the DSN or SimbaSettingReader, and the
DSN overrides the SimbaSettingReader.

AutoReconnectCooldown

Specifies the amount of time, in seconds, the client waits between reconnection attempts.

Required No

Allowed values 0 – UINT_MAX seconds

Default value 0

Example AutoReconnectCooldown=5

Comment

Each connection attempt is limited by SQL_ATTR_LOGIN_TIMEOUT, so the
total time taken before the auto-reconnect process times out is
(AUTORECONNECTCOOLDOWN + SQL_ATTR_LOGIN_TIMEOUT) *
AUTORECONNECTATTEMPTS.

This property can be set at multiple levels that override each other.
Connection String overrides the DSN or SimbaSettingReader, and the
DSN overrides the SimbaSettingReader.

Configuring SimbaClient for JDBC

SimbaClient for JDBC configuration properties control logging, server discovery, and security.
Configuration properties are either added to the connection URL, or implemented programmatically in the
JDBC application.

For information on individual configuration properties, see SimbaClient for JDBC Configuration Properties
on page 66.

Connection URL

The connection URL format for the JDBC client is:
jdbc:simba://[HOST];[property]=[value];[property]=[value]

For example, in IPv4:
jdbc:simba://123.33.2.2:1543,123.6.33.22:1543;
UID=BartonL;PWD=sneaky;LogLevel=0

For example, in IPv6:
jdbc:simba://[FE80:0000:0000:0000:0202:B3FF:FE1E:8329]:1543;
UID=BartonL;PWD=sneaky;LogLevel=0

Note:

If you programmatically specify a default port, you do not need to set one in the connection string.

Linking to the connector class

You must link the JDBC application to the correct connector class:

l com.simba.client.core.jdbc4.SCJDBC4Driver for JDBC 4 connectors
l com.simba.client.core.jdbc41.SCJDBC41Driver for JDBC 4.1 connectors
l com.simba.client.core.jdbc42.SCJDBC4Driver for JDBC 4.2 connectors

SimbaClient for JDBC Configuration Properties

All configuration properties are configured either programmatically or on the connection string.The
following table summarize the configuration properties. Detailed descriptions are provided in subsequent
tables.

Note:

For properties that list a maximum value of UINT_MAX, this equals a value of 232-1.

Property Description

UID User ID.

PWD User password.

Timeout properties

LoginTimeout The time to wait for a response during login.

ConnectionTimeout The time to wait for a response from the server.

Logging configuration properties

LogLevel Controls the granularity of the messages and events that are logged.

LogPath Specifies the directory where the log files are created.

Integrated security (single sign-on) properties

UseIntegratedSecurity Indicates whether integrated security (Kerberos) should be used.

ServicePrincipalName The service principal name for the server with integrated security.

Secure socket layer (SSL) properties

UseSsl Enable SSL encryption for the connection between SimbaClient and
SimbaServer.

TrustedStorePath The location of the Java keystore.

TrustedStorePassword The password used to access the trusted key store.

SSLAllowHostMismatch Specifies whether the client will accept a hostname from the server that
differs from the one in the server's SSL certificate.

SSLAllowExpiredCert Specifies whether the client will accept an expired SSL certificate from
the server.

SSLCACertFile Location of the SSL certificate authority certification file.

General configuration properties

UID

The username to use when accessing the connector.

Required Yes, if the server requires it.

Allowed values Any valid string.

Default value None

Example UID=jdoe

Comment

The sample Quickstart implementation does not require a username or
password in order to establish a connection between the JDB client and
the SimbaServer. You can modify the server to require a username and
password.

PWD

The password to use when accessing the connector.

Required Yes if the connector requires it.

Allowed values Any valid string.

Default value None

Example PWD=123Hello

Timeout Properties

For more information on timeout behavior, see How does timeout work? on page 99

LoginTimeout

The time, in seconds, to wait for a response from the server after a login request is made by the client.

Required No

Range 0 – UINT_MAX seconds

Default value 60

Example LoginTimeout=10

Comment

A value of 0means no timeout.

The value of this property is used to set the value of SQL_ATTR_LOGIN_TIMEOUT.

Note:

l A log in timeout may occur earlier than the time specified by this value.
For example, if a DNS lookup failure occurs, the log in attempt times out
immediately.

l If additional servers are specified in ServerList, the client attempts to log
in to the other servers before timing out.

ConnectionTimeout

The timeout, in seconds, to wait for a response from the server after sending a command.

Required No

Range 0 – UINT_MAX seconds

Default value 0 (no timeout)

Example ConnectionTimeout=10

Comment A value of 0means no timeout.

Logging configuration properties

LogLevel

Controls the granularity of the messages and events that are logged.

Note:

Log files are not created if this value is set to OFF.

Required No

Allowed
values See Comment.

Default value OFF

Example LogLevel=ERROR

Comment

With this keyword, you can control the amount of log output by controlling the kinds
of events that are logged.

Possible values (case sensitive):

l OFF: no logging occurs
l FATAL: only log fatal errors
l ERROR: log all errors
l WARNING: log all errors and warnings
l INFO: log all errors, warnings, and informational messages
l DEBUG: log method entry and exit points and parameter values for debugging
l TRACE: log all method entry points

You can also use integers 0 - 6 instead of String, but String is more descriptive.

LogPath

Specifies where the log file is created.

Required No

Allowed
values Valid directory path, or unspecified.

Default value Unspecified

Example LogPath=C:\Simba Technologies\Temp

Comment If this value is not set, the log files are written to the current working directory of the
SimbaClient.

Integrated security (single sign-on) properties

For more information on configuring Kerberos, see Kerberos Authentication Support on page 85.

ServicePrincipalName

The service principal name for the server with integrated security.

Required Yes if UseIntegratedSecurity is True.

Allowed
values Any valid service principal name.

Default
value no default

Example ServicePrincipalName=<SPN of the server>

UseIntegratedSecurity

Indicates whether integrated security (single sign-on), should be used when the client establishes a
connection to the server. Kerberos authentication is used for integrated security.

Note:

You must configure UseIntegratedSecurity on both the SimbaServer and the SimbaClient in
order to use integrated security.

Required No

Allowed
values Disabled, Enabled, Required

Default
value

Disabled

Example UseIntegratedSecurity=Required

Comment

If enabled on the client and the server, integrated security will be used during
connection.

For a summary of the connection types that will be established based on the different client and
server settings, see Configuration Properties for Integrated Security on page 97.

Secure socket layer (SSL) properties

For more information on configuring SSL, see Configuring Secure Sockets Layer (SSL) on page 75.

TrustedStorePath

The location of the Java keystore.

Required No

Allowed values Valid absolute or relative directory path to the SSL trusted store.

Default value no default

Example TrustedStorePath="C:\JDBCKeyStore"

Comment

Use one of the following options to enable SSL:

l TrustedStorePath and
TrustedStorePassword

l Or, SSLCACertFile

TrustedStorePassword

The password used to access the trusted key store.

Required No

Allowed values Any valid string.

Default value none

Example TrustedStorePassword=SimbaServer1543

Comment

Use one of the following options to enable SSL:

l TrustedStorePath and
TrustedStorePassword

l Or, SSLCACertFile

SSLAllowExpiredCert

Specifies whether the client will accept an expired SSL certificate from the server.

Required No

Range Yes or No (also accepts 1 or 0)

Default value No

Example SSLAllowExpiredCert=Yes

Comment When enabled, the client will accept an expired SSL certificate from the server.

SSLAllowHostMismatch

Specifies whether the client will accept a hostname from the server that differs from the one in the server's
SSL certificate.

Required No

Allowed
values Yes or No(also accepts 1 or 0).

Default
value

No

Example SSLAllowHostMismatch=Yes

Comment When enabled, the client will accept a different hostname from the server than the one
specified in the server’s SSL certificate.

SSLCACertfile

Location of the SSL certificate authority certification file for SimbaClient to use when encrypting SSL
communication with SimbaServer.

Required Yes if UseSsl is enabled.

Allowed
values Disabled, Enabled, Required

Default
value

Disabled

Example
SSLCACertFile=C:\Simba Technologies\SimbaEngineSDK\10.1
\Documentation\SSLCertificates\
SampleCACertificate.pem

UseSsl

This setting allows the connection between the SimbaClients and SimbaServer to use Secure Sockets
Layer (SSL) encryption.

Note:

You must configure SSL on both the SimbaServer and the SimbaClient in order to establish a
secure connection. See Configuration Properties for SSL on page 75.

Required Yes, if UseSsl is enabled on the Server.

Allowed values Disabled, Enabled, Required

Default value Disabled

Example UseSsl=Enabled

Configuring Secure Sockets Layer (SSL)

SimbaClient/Server supports Secure Sockets Layer (SSL) encryption on the connection between
SimbaClient and SimbaServer. If SSL is enabled, SimbaClient and SimbaServer use OpenSSL to encrypt
all data moving across the network connection.

Turning On SSL

To establish an SSL connection, you must set the required configuration properties on SimbaClient and
SimbaServer, as explained in Configuration Properties for SSL on page 75.

Using SSL Certificates

To configure SSL using certificates, you must generate a set of SSL certificates. The Certificate Authority
(CA) certificate that is used to sign the Server Certificate becomes the SslCACertfile that the Client will
use to authenticate the Server.

Example SSL certificates are included in the [INSTALL_
DIR]\SimbaEngineSDK\10.1\Documentation\SSLCertificates directory. These are Simba
self-signed certificates that were created using OpenSSL.

For more information, see Generating an SSL Certificate with Verisign on page 78 or Generating a
Certificate Authority (CA) Certificate for Self-Signing on page 77.

Finally, you must distribute the certificates. See Distributing SSL Certificates on page 79.

Using a Trusted Key Store

For the JDBC client, you can use either a trusted key store or SSL certificates, as explained in Creating a
Trusted Key Store for JDBC Client on page 76.

Configuration Properties for SSL

To establish an SSL connection, you must configure the following properties on both SimbaClient and
SimbaServer:

l UseSSL to specify that SSL is to be used.
l SslCertfile on the Server, or SslCACertfile on the client, to specify a certificate file.
l OR, SslKeyFile to specify a key file. Only one of SslCertfile or SslKeyFile needs to be
specified.

For more information on setting ODBC client properties for SSL, see Secure socket layer (SSL) properties
on page 61. For more information on setting JDBC client properties for SSL, see Secure socket layer

(SSL) properties on page 72. For more information on setting properties for SSL, see SSL Configuration
Properties on page 42.

UseSSL

The following table explains the type of connection that is established when UseSsl is set on the client
and server:

Client

UseSsl=
Disabled

Client

UseSsl=
Enabled

Client

UseSsl=
Required

Server

UseSsl=Disabled
Connection. No SSL. Connection. No SSL. No Connection.

Server

UseSsl=Enabled
Connection. No SSL. Connection with SSL. Connection with SSL.

Server

UseSsl=Required No Connection.
Connection with SSL. Connection with SSL.

Example:

l When SimbaClient has UseSslset to Enabled and SimbaServer has UseSslset to Required, a
connection using SSL will be established.

l When SimbaServer has UseSSL set to Required, SimbaClients that want to connect to it must
have UseSSL set to either Enabled or Required.

l When SimbaServer has UseSSL set to Enabled, it will accept both SSL and non SSL connections
from clients, though SSL will be used if the client has it set to either Enabled or Required.

Creating a Trusted Key Store for JDBC Client

For the JDBC Client, you can configure SSL using either an SSL certificate or a trusted key store.

To create a trusted key store:

1. Make sure that the Java bin directory is in your PATH variable.
2. Open a command window and run the following command:

keytool –import –alias “JDBCKeyStore” –file [Path]\CA-cert.pem –keystore
C:\JDBCKeyStore

The TrustedStorePath keyword must point to [Path]\JDBCKeyStore.
3. You will be prompted for a password and be asked to verify that the given certificate should be

trusted. Type yes when prompted.

Generating a Certificate Authority (CA) Certificate for Self-Signing

This section explains how to establish yourself as a root certificate authority for self-signing your
certificates. Self-signed certificates are useful during development when you do not need to purchase a
commercial certificate. For instructions on generating a commercially-signed certificate, see Generating
an SSL Certificate with Verisign on page 78.

To install OpenSSL:

1. Install OpenSSL from http://openssl.org.
2. Add the path to the openssl.exe executable to your PATH variable. Refer to http://openssl.org for

other configuration properties.

To create the root CA certificate:

1. Create the C:\newcerts directory:
> md C:\newcerts

2. Change to the newcerts directory:
> cd C:\newcerts

3. Generate a CA private key:
> openssl genrsa -des3 -out CA-key.pem 2048

4. Generate the root CA certificate.
> openssl req -new -key CA-key.pem -x509 -days 1000 -out CA-cert.pem

You will be prompted for information which will be incorporated into the certificate, such as Country, City,
Company Name, etc. Remember what information you entered as you may get prompted for this
information again at a later stage. When asked for an email address, provide the email address of the CA
contact.

The root CA certificate is created.

You will need CA-key.pem and CA-cert.pem in the following steps.

To create a Signing a Server Certificate:

You will need CA-key.pem and CA-cert.pem from the previous step.

http://openssl.org/
http://openssl.org/

1. Generate a new key:
openssl genrsa -des3 -out server-key.pem 2048

2. Generate a certificate signing request:
3. Locate the openssl.cnf file is in your OpenSSL installation directory.
4. Copy the openssl.cnf file to the newcerts directory. You may need to modify some of the

configuration settings in this file.
5. Enter the following command (all in one line):

openssl req –new –config openssl.cnf –key server-key.pem –out
signingReq.csr

6. Self-sign the certificate using your CA-cert.pem certificate. Enter the following command (all in
one line):
openssl x509 -req -days 365 -in signingReq.csr -CA CA-cert.pem -CAkey CA-
key.pem -CAcreateserial -out server-cert.pem

A server certificate is created and signed.

Generating an SSL Certificate with Verisign

This section explains how to generate an SSL Certificate with Verisign.

Ensure OpenSSL is installed, and the location of openssl.exe is added to your PATH variable. See
Generating a Certificate Authority (CA) Certificate for Self-Signing on page 77.

To create the Server Private Key:

1. Create the directory C:\newcerts:
> md C:\newcerts

2. Change to the newcerts directory:
> cd C:\newcerts

3. Generate a new key:
openssl genrsa –out server-key.pem

4. Generate a certificate signing request:openssl req –new –key server-key.pem –out
signingReq.csr

You will be asked a series of questions which will be incorporated into the certificate request, such
as Country, City, Company Name, etc. When asked for an email address, provide a valid email
address because Verisign will send you the signed certificate via this email address.

Note:

The information you enter will be verified when you send the request to a trusted authority.

5. Send the request (signingReq.csr) to the Certificate Authority (Verisign). You may need to verify
that the information collected when generating signingReq.csr is correct.

If the request for certificate signing was successful, the Certificate Authority (Verisign) will send you
a certificate using the email address you provided. In the email, there will be an encrypted CA
certificate and a link to an encrypted CA intermediate certificate.

6. Copy both certificates to a text file, with the non-intermediate certificate followed by the intermediate
certificate. This text file will be referred to as CA-cert.pem in the following steps.

To create and sign a Server Certificate:

1. Ensure you have the following files, which were generated in the previous sections:
l server-key.pem

l signingReq.csr

l CA-cert.pem

2. Copy the CA-cert.pem file to your C:\newcerts directory. Ensure the server-key.pem and
signingReq.csr files are in this directory as well.

3. Change to the newcerts directory.
> cd C:\newcerts

4. Create the server certificate. Enter the following command (all in one line):
openssl CA –in signingReq.csr –out server-cert.pem –keyfile server-
key.pem –days 365 –cert CA-cert.pem

The server certificate is created and signed.

Distributing SSL Certificates

In order to set up SSL, the following certificates are required:

Certificate Name Description

Server key file, for example server-key.pem.

The file for the
SSLKeyFile con-
figuration keyword for
SimbaServer.

Server certificate file, for example server-cert.pem.

The file for the SSLCert-
file configuration
keyword for Sim-
baServer.

Certificate Name Description

Certificate authority file, for example CA-cert.pem.

The file for the
SSLCACertFile con-
figuration keyword for
SimbaClient.

Generating an SSL Certificate with Verisign on page 78

Generating a Certificate Authority (CA) Certificate for Self-Signing on page 77

Setting Properties to Control Logging

You can configure the granularity of logging for SimbaClient and SimbaServer. You can also configure the
location of log files, and set properties to prevent log files from becoming too large.

Note:

Logging settings are configured on a per-machine basis. These settings apply to every user and
DSN on the machine.

What properties can I set to control logging?

For a description of logging properties, see Logging Configuration Properties in the following sections:

l SimbaClient for ODBC Configuration Properties on page 51
l SimbaServer Configuration Properties on page 33
l SimbaClient for JDBC Configuration Properties on page 66

Where do I set properties to control logging?

The following table tells you where to find the logging properties.

Description

SimbaClient for ODBC

See Configuring SimbaClient for ODBC onWindows on page 47 for
Windows platforms.

See Configuring SimbaClient for ODBC on Linux, Unix, and macOS on
page 49 for Linux, Unix, and macOS platforms.

SimbaClient for JDBC See Configuring SimbaClient for JDBC on page 66.

SimbaServer

See Configuring SimbaServer on Windows on page 29 for Windows
platforms.

See Configuring SimbaServer on Linux, Unix, and macOS on page 31
for Linux, Unix, and macOS platforms.

Example: Logging Properties for the QuickStart SimbaServer and ODBC Client

The following picture shows a section of the Windows Registry that contains logging configuration
properties for the Quickstart server and the Quickstart ODBC client. It also shows the location of the

logging configuration properties for the stand-alone Quickstart connector, for reference.

Contact Us

For more information or help using this product, please contact our Technical Support staff. We welcome
your questions, comments, and feature requests. You can contact Technical Support via the Magnitude
Support Community at www.magnitude.com.

To help us assist you more quickly, please have the following information ready when you contact us:

l The platform and operating system version for the server and client computer(s)
l Your Simba SDK product version.
l The contents of the files listed in the tables below.

File Information

server Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Server

driver Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Driver

odbc Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\ODBC and/or HKEY_
CURRENT_USER\SOFTWARE\ODBC

odbcinst Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\ODBC

SimbaServer on Windows

File Information

driver Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Driver

odbc Registry key under HKEY_CURRENT_USER\SOFTWARE\ODBC

odbcinst Registry key under HKEY_LOCAL_MACHINE\SOFTWARE\ODBC

SimbaClient on Windows

File Information

.odbc.ini File in SimbaServer user's home directory

SimbaServers and SimbaClients On Linux, Unix, and macOS

https://www.magnitude.com/

File Information

.profile File in SimbaServer user's home directory

.simba.ini File in SimbaServer user's home directory

Kerberos Authentication Support

In addition to plain text authentication, Simba SDK supports authentication using the Kerberos protocol.
This allows single sign-on from the client to the server, using the user's current machine credentials (for
example the user's Windows password).

The diagram below shows initialization and service requests when Simba SDK uses Kerberos
authentication.

Step Description

1A The Ticket Granting Ticket (TGT) is requested from the client computer externally from the
SimbaClient connector, using the default principal.

1B The Key Distribution Service returns a TGT and session key.

2A

When the connection to SimbaServer is started, SimbaClient requests a service ticket from
the Ticket Granting Service. The request uses the TGT and session key returned for the
default principal, and a service request including the Kerberos principal name of the
SimbaServer.

2B The TGS confirms request authenticity, and sends back a service ticket and encrypted
service session key.

3A The SimbaClient requests a service from SimbaServer using the service ticket and service
session key.

3B Authenticates using service session key.

3C Returns authenticated response and service begins.

When using Microsoft Active Directory to provide Kerberos authentication, Kerberos tickets are requested
automatically when the user logs on to a domain. Configure Linux, Unix, and macOS client computers to
request Kerberos tickets as needed. For more details, refer to Kerberos documentation.

Example: Configuring Kerberos for C++ Servers

This example shows how to enable Single Sign-on (SSO) with Kerberos between the ODBC client and the
Quickstart connector compiled as a server. For simplicity, both the client and the server are deployed on
the sameWindows machine. Active Directory (AD) Kerberos is used.

To complete this example, you must have administrative access to the Active Directory server.

This example includes the following steps:

l Step 1: Modify the Server Code on page 86
l Step 2: Configure the Kerberos SPN on page 87
l Step 3: Run the Quickstart Server as a Windows Service on page 88
l Step 4: Update the User for the Quickstart Service on page 88
l Step 5: Set the Server Configuration Properties on page 88
l Step 6: Set the ODBC Client Configuration Properties on page 89
l Step 7: Test SSO with Kerberos Authentication on page 90

Step 1: Modify the Server Code

Modify the Quickstart sample to implement a connection that uses Kerberos credentials, and to set a
property specifying that integrated security is used.

1. Implement a Connection class that uses credentials. To do this, open the file QSEnvironment.h
and declare the function CreateConnection(ICredentials*):

#include "ICredentials.h"
....
/** Creates and returns a new IConnection instance with established
credentials.
@param in_credentials Credentials established by integrated security.

(NOT OWN)
@return New IConnection instance. (OWN)

**/
virtual Simba::DSI::IConnection* CreateConnection(ICredentials* in_
credentials);

2. Open the file QSEnvironment.cpp and add the function declared above:

IConnection* QSEnvironment::CreateConnection(ICredentials* in_
credentials) { ENTRANCE_LOG(GetLog(), "Quickstart", "QSEnvironment",
"CreateConnection(in_credentials)"); return new QSConnection(this); }

Note:

You can implement custom security behavior in your connector by extract and use the
username, password, and other information from ICredentials.

3. Set the driver property value DSI_DRIVER_SUPPORTS_INTEGRATED_SECURITY to DSI_
DRIVER_IS_SUPPORTS_KERBEROS. To do this,
open QSDriver.cpp and add the following lines of code to
QSDriver::SetDriverPropertyValues():

#ifdef SERVERTARGET SetProperty(DSI_DRIVER_SUPPORTS_INTEGRATED_SECURITY,
AttributeData::MakeNewUInt32AttributeData(DSI_DRIVER_IS_SUPPORTS_
KERBEROS));
SetProperty(DSI_DRIVER_SERVICE_PRINCIPAL_NAME,
AttributeData::MakeNewWStringAttributeData(new simba_wstring
(SimbaSettingReader::ReadSetting("ServicePrincipalName")))); #endif

For more information about how this property is used to determine whether a connection is
established, see Configuration Properties for Integrated Security on page 97. For more information
about OR-ing other property values with this property, see the file
DataAccessComponents\Include\DSI\DSIDriverProperties.h in the installation
directory of your Simba SDK.

4. Optionally, you can change the service name. In the Quickstart example, the service name is set
using the call SimbaSettingReader::SetServiceName("SimbaQuickstartService"). In
this example, we change the name to MyQuickstartService.

5. Build the Quickstart connector as a server. To do this, select debug_Server as the solution
configuration, then build the solution.

Step 2: Configure the Kerberos SPN

Tip:

This step requires access to the Active Directory server, so you may need to get help from your
IT department.

On the Active Directory server, create a Service Principal Name (SPN) associated with the user that you
will use to run the Quickstart service. You can choose any name for the service. In this example, we use
the following command:
setspn -U -A MyQuickstart/Win-DSV05.wd1.sen WD1\KerberosITUser

Step 3: Run the Quickstart Server as a Windows Service

Run the Quickstart server as a Windows Service. For more information, see Configure SimbaServer as a
Windows Service on page 20.

If you copied the server to a machine that does not have the Simba SDK installed, you must also copy over
the dependencies. See SimbaServer Required Files on page 22.

Step 4: Update the User for the Quickstart Service

In order for Kerberos authentication to succeed, you must run the Quickstart service under the user
account that you specified when creating the SPN.

To update the user account for the Quickstart service:

1. Open Windows Services and double-click the service.
2. Select the Log On tab, select This Account, and enter the credentials for the user that was

configured with the SPN. In this example the SPN is set for the user WD1\KerberosITUser, so the
user account is set to wd1\KerberosITUser.

Step 5: Set the Server Configuration Properties

In the Windows registry editor, under the registry key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Server, configure the following values as
described in SimbaServer Configuration Properties on page 33:

l DBF
l DriverLocale
l ErrorMessagesPath
l ListenAddress
l ListenPort
l LogLevel
l LogPath

For example:

Step 6: Set the ODBC Client Configuration Properties

If you copy the ODBC client to a machine that does not have the Simba SDK installed, you must also copy
over the dependencies. For more information, see SimbaClient for ODBC Required Files on page 24.

Under the Windows registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC Data
Sources, configure the client and connector name. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\<Client Name>,
configure the following keys as described in SimbaClient for ODBC Configuration Properties on page 51:

l Driver
l LogLevel
l LogPath
l ServerList
l ServicePrincipalName
l UseIntegratedSecurity = Required

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers,
ensure there is an entry for your client that is set to installed. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\<DriverName>,
configure the Driver key to point to the location of the connector DLL. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Simba\SimbaClient\Driver, configure
the following keys:

l ErrorMessagesPath
l LogLevel
l LogPath

For example:

Step 7: Test SSO with Kerberos Authentication

Query the server to verify that SSO using Kerberos is configured correctly.

To test the deployment:

1. Log in to the machine as the user that you specified when creating the SPN. In this example, it is
KerberosITUser.

2. Make sure that the Quickstart server is started as a service, as explained in Step 4: Update the User
for the Quickstart Service on page 88.

3. Navigate to the folder containing the ODBC Test application, by default:
C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools

4. Navigate to the folder that corresponds to your connector’s architecture: amd64, ia64 or x86. For
example, if you built the 32-bit version of your connector on a 64-bit machine, select the x86 version.

5. Click one:
l odbcte32.exe to launch the ANSI version
l Or, odbct32w.exe to launch the Unicode version.

Important:

It is important to run the correct version of the ODBC Test tool for ANSI or Unicode and 32-bit
or 64-bit.

6. In the ODBC Test tool, click Conn > Full Connect.
The Full Connect window opens.

7. In the Full Connect dialog, select your client from the list of data sources, and then click OK.
8. In the ODBC Test window, enter SELECT * from EMP

9. Click and to output a simple result set. The results are displayed in the window.

10. To validate that the correct CreateConnection()method is called, open the server log file.
Search for the entry CreateConnection(in_credentials) that you added to the server code in
step Step 1: Modify the Server Code on page 86.

Note:

You can use the credential information passed in by Kerberos to enforce custom security in your
connector. For more information, see ICredentials.h in the
DataAccessComponents\Include folder of your installation directory.

Example: Configuring Kerberos For Java DSII Connectors

This example shows how to enable Single Sign-on (SSO) with Kerberos between the ODBC client and the
JavaQuickstart connector compiled as a server. For simplicity, both the client and the server are deployed
on the sameWindows machine. Active Directory (AD) Kerberos is used.

The JavaQuickstart connector is an ODBC connector that allows you to write the DSII in Java, then link to
the C++ server using a JNI bridge. For an example using the pure-C++ Quickstart connector, see
Example: Configuring Kerberos for C++ Servers on page 86.

To complete this example, you must have administrative access to the Active Directory server.

This example includes the following steps:

l Step 1: Modify the DSII Code on page 91
l Step 2: Create the gss.conf and krd5.ini Files on page 93
l Step 3: Generate the Keytab File on page 94
l Step 4: Set the Connector Configuration Properties on page 95
l Step 5: Set the ODBC Client Configuration Properties on page 95
l Step 6: Test SSO with Kerberos Authentication on page 96

Step 1: Modify the DSII Code

Modify the JavaQuickstart sample to implement a connection that uses Kerberos credentials, and to set a
property specifying that integrated security is used.

1. Implement a constructor for IConnection that takes the ICredentials parameter. To do this,
open the file QSEnvironment.java and add the following lines:

import com.simba.support.security.ICredentials;
....
public QSConnection(QSEnvironment environment, ICredentials credentials)
throws ErrorException { super(environment);
LogUtilities.logFunctionEntrance(getConnectionLog(), environment,
credentials); setDefaultProperties();

// Read in any configuration and determine if the connector is
configured to be a server.
// If the file doesn't exist, then the default is the non-server
configuration.
loadConfiguration();
String setting = m_connConfig.getProperty(TARGET); if (null != setting
&& Boolean.parseBoolean(setting)) { m_isServer = true; } }

Note:

You can implement custom security behavior in your connector by extracting and using the
username, password, and other information from ICredentials.

2. Set the driver property value DSI_DRIVER_SUPPORTS_INTEGRATED_SECURITY to DSI_
DRIVER_IS_SUPPORTS_KERBEROS. To do this, open QSDriver.java and add the following
lines of code to QSDriver::setDefaultProperties():

import
com.simba.dsi.core.utilities.DriverPropertyValues;
setProperty(

DriverPropertyKey.DSI_DRIVER_SUPPORTS_INTEGRATED_SECURITY,

new Variant(
Variant.TYPE_UINT32,

DriverPropertyValues.DSI_DRIVER_IS_SUPPORTS_KERBEROS

| DriverPropertyValues.DSI_DRIVER_IS_EXEC_AS_USER));

For more information about how this property is used to determine whether a connection is
established, see Configuration Properties for Integrated Security on page 97. For more information
about OR-ing other property values with this property, see
com.simba.dsi.core.utilities.DriverPropertyKey in the SimbaEngine Java API
Reference folder of your installation directory.

3. Build the JavaQuickstart connector as a server. To do this:
l In the QuickstartJNIDSI project, select debug_Server as the solution configuration, then
build the solution.

l In the JavaQuickstart project, build the project as a regular project.

Step 2: Create the gss.conf and krd5.ini Files

To create the gss.conf file:

1. Copy the following lines into a text file, making the following substitutions:
l For principal, add the name of the Kerberos principal. Typically this is a user or group that
you want to have SSO access to the JavaQuickstart server. For more information on Kerberos
principals, see https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-
Kerberos-Principal_003f.html.

l For keyTab, add the path to the keytab file. You create the keytab file in the next step.

com.sun.security.jgss.accept {

com.sun.security.auth.module.Krb5LoginModule required
principal="KerberosITUser@WD1.SEN"
keyTab="file:C:/SimbaEngine/JavaInternalTestWin64Debug/JIT.keyt
ab"
useKeyTab=true
storeKey=true
doNotPrompt=false
debug=true;

};

2. Save the file, gss.conf, to any folder you choose.

Note:

In this example, we set the following values to facilitate debugging. In production, you may want to
set other values.

l debug=true enables logging of Kerberos authentication information to standard out.
l doNotPrompt=false specifies that Kerberos authentication should prompt for missing
information.

To create the krd5.ini file:

1. Copy and paste the following text into a text file, making the replacements described below:
l For default_realm, replace WD1.SEN with the name of your default realm.
l For kdc, replace adserver.wd1.sen with the full name of your Kerberos domain controller.
l For default_domain, replace wd1.sen with the name of your default domain.

https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html
https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html

[libdefaults]
default_realm = WD1.SEN
default_tkt_enctypes = rc4-hmac aes128-cts des3-cbc-sha1 des-cbc-md5
des-cbc-crc
default_tgs_enctypes = rc4-hmac aes128-cts des3-cbc-sha1 des-cbc-md5
des-cbc-crc
permitted_enctypes = rc4-hmac aes128-cts des3-cbc-sha1 des-cbc-md5 des-
cbc-crc
[realms]
WD1.SEN = {
kdc = adserver.wd1.sen
default_domain = wd1.sen
}

For more examples of krb5.conf files, see https://web.mit.edu/kerberos/krb5-
1.12/doc/admin/conf_files/krb5_conf.html#sample-krb5-conf-file.

2. Save the file, krd5.ini, to the same folder as in the previous step.

Step 3: Generate the Keytab File

In the same directory that contains the gss.conf and krd5.ini files, run the following command to
create the keytab file:
ktpass -out <KeyTab file> -princ <User> -pass <password> -ptype KRB5_NT_
PRINCIPAL -kvno 0

where:

l <KeyTab file> is the full path to the keytab file you are creating. This must match the keytab file
specified when creating the gss.conf file

l <User> is the principal specified in the gss.conf file

For example:
ktpass -out C:\SimbaEngine\JavaInternalTestWin64Debug\JIT.keytab -princ
KerberosITUser@WD1.SEN -pass <pass> -ptype KRB5_NT_PRINCIPAL -kvno 0

Note:

In this example, kvno is set to 0 to specify that Java does not ensure a match with the
ActiveDirectory value of kvno. In production, you may want to change this to a different value. For
more information, see https://dmdaa.wordpress.com/2010/05/08/how-to-get-needed-kvno-for-
keytab-file-created-by-java-ktab-utility.

https://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#sample-krb5-conf-file
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/conf_files/krb5_conf.html#sample-krb5-conf-file
https://dmdaa.wordpress.com/2010/05/08/how-to-get-needed-kvno-for-keytab-file-created-by-java-ktab-utility
https://dmdaa.wordpress.com/2010/05/08/how-to-get-needed-kvno-for-keytab-file-created-by-java-ktab-utility

Step 4: Set the Connector Configuration Properties

In the Windows registry editor, under the registry key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Server, configure the following values as
described in SimbaServer Configuration Properties on page 33:

l DBF
l DriverLocale
l ErrorMessagesPath
l ListenAddress
l ListenPort
l LogLevel
l LogPath

For example:

In the same registry key, configure the value JNIConfig to contain the values shown below. Note that the
pipe character, "|", is used as a delimiter:
-Djava.security.auth.login.config=<path to gss.conf>|-
Djavax.security.auth.useSubjectCredsOnly=false|-
Djava.security.krb5.conf=<path to krb.ini>

For example:
-Djava.security.auth.login.config=c:\test\gss.conf|-
Djavax.security.auth.useSubjectCredsOnly=false|-
Djava.security.krb5.conf=c:\test\krb.ini

Step 5: Set the ODBC Client Configuration Properties

If you copy the ODBC client to a machine that does not have the Simba SDK installed, you must also copy
over the dependencies. For more information, see SimbaClient for ODBC Required Files on page 24.

Under the Windows registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC Data
Sources, configure the client and connector name. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\<Client Name>,
configure the following keys as described in SimbaClient for ODBC Configuration Properties on page 51:

l Driver
l LogLevel
l LogPath
l ServerList
l ServicePrincipalName
l UseIntegratedSecurity = Required

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers,
ensure there is an entry for your client that is set to installed. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\<DriverName>,
configure the Driver key to point to the location of the connector DLL. For example:

Under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Simba\SimbaClient\Driver, configure
the following keys:

l ErrorMessagesPath
l LogLevel
l LogPath

For example:

Step 6: Test SSO with Kerberos Authentication

Query the server to verify that SSO using Kerberos is configured correctly.

To test the deployment:

1. Log in to the machine as the user that you specified when creating the keytab file. In this example, it
is KerberosITUser.

2. Navigate to the folder containing the ODBC Test application, by default:

C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools

3. Navigate to the folder that corresponds to your connector’s architecture: amd64, ia64 or x86. For
example, if you built the 32-bit version of your connector on a 64-bit machine, select the x86 version.

4. Click one:
l odbcte32.exe to launch the ANSI version
l Or, odbct32w.exe to launch the Unicode version.

Important:

It is important to run the correct version of the ODBC Test tool for ANSI or Unicode and 32-bit
or 64-bit.

5. In the ODBC Test tool, click Conn > Full Connect to open the Full Connect dialog.
6. In the Full Connect dialog, select your client from the list of data sources, and then click OK.
7. In the ODBC Test window, type the following command:

SELECT * from EMP

8. Click and to output a simple result set. The results are displayed in the window.

9. To validate that the correct CreateConnection()method is called, open the server log file.
Search for the entry CreateConnection(in_credentials) that you added to the server code in
step Step 1: Modify the DSII Code on page 91.

Note:

You can use the credential information passed in by Kerberos to enforce custom security in your
connector. For more information, see ICredentials.h in the
DataAccessComponents\Include folder of your installation directory.

Configuration Properties for Integrated Security

For client-side configuration, the following registry values are used to configure Kerberos authentication:

l UseIntegratedSecurity
l ServicePrincipalName

For more information on setting these client-side properties, see SimbaClient for ODBC Configuration
Properties on page 51.

To specify that the server use Kerberos, set the property DSI_DRIVER_SUPPORTS_INTEGRATED_
SECURITY to DSI_DRIVER_IS_SUPPORTS_KERBEROS. For more information about OR-ing other
property values with this property, see DSIDriverProperties.h in <INSTALL_
DIR>\DataAccessComponents\Include\DSI.

The following table documents the type of connection that is established using different combinations of
UseIntegratedSecurity on SimbaClient and different levels of Kerberos support on SimbaServer:

Client

UseIntegrated
Security is Disabled

Client

UseIntegrated
Security is Enabled

Client

UseIntegrated
Security =
Required

Server

Kerberos is
Not Supported

Connection. No Kerberos. Connection. No Kerberos. No Connection.

Server

Kerberos is
Supported

Connection. No Kerberos.
Connection only if Kerberos
authentication succeeds.

Connection only if
Kerberos
authentication
succeeds.

Server

Kerberos is
Supported with
Fallback

Connection. No Kerberos.
Connection only if Kerberos
authentication or basic
authentication succeeds.

Connection only if
Kerberos
authentication
succeeds.

Server

Kerberos is
Required

No Connection.

Connection only if Kerberos
authentication succeeds.

Connection only
if Kerberos
authentication
succeeds.

For example, if SimbaClient has UseIntegratedSecurity set to 1 and SimbaServer is configured to require
Kerberos, a connection will be established only if Kerberos authentication succeeds.

Frequently Asked Questions

How does timeout work?

Timeout properties control the behavior of different types of timeouts on the connection between the client
and the server. Typically, the timeout value is set on the client but implemented on the server. The only
timeout that is implemented by the client is the login timeout.

You must provide implementation for some types of timeouts in your server DSII, while other timeouts are
handled automatically by the Simba SDK and are not configurable.

The following table summarizes the timeout configuration properties:

Timeout Property Description

IdleTimeout (on the cli-
ent)

This property specifies the timeout defined by SQL_ATTR_CONNECTION_
TIMEOUT, which covers any situation that requires a timeout and is not asso-
ciated with query execution or login. The value is set on the client, and you
must implement the timeout behavior in your server DSII.

IdleTimeout (on the
server)

The duration in seconds that a connection can remain idle, with no com-
munication from a client, before SimbaServer disconnects it. This timeout
behavior is implemented automatically in the Simba SDK.

LoginTimeout

This property specifies the timeout defined by SQL_ATTR_LOGIN_
TIMEOUT, which is the time to wait for a response from the server after a
login request is made by the client. The behavior is implemented in the
ODBC and JDBC client.

QueryTimeout

This property controls the timeout defined by SQL_ATTR_QUERY_
TIMEOUT, which is the timeout during query and command execution. The
value is set on the client, and you must implement the timeout behaviour in
your server DSII.

For more information on setting the timeout properties, see the following sections:

l For information on setting timeout properties in the ODBC client, see Timeout properties on page 56.
l For information on setting timeout properties in the JDBC client, see Timeout Properties on page 68.
l For information on setting timeout properties in the server, see IdleTimeout on page 35.

Keepalive messages

The ODBC and JDBC client sends keepalive messages to the server once a minute to ensure that the
connection is valid. If the connection is no longer valid, the client terminates it. The frequency of keepalive
messages is not configurable.

How can I build the ODBC or JDBC client?

The ODBC and JDBC clients are shipped by Simba Technologies Inc., so you do not need to compile
them. See Example: ODBC Client/Server Deployment on page 10 for step-by-step instructions on
deploying the QuickStart sample connector in a client/server deployment.

Third-Party Trademarks

Simba, the Simba logo, Simba SDK, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or other countries.

Mac and macOS are trademarks or registered trademarks of Apple, Inc. or its subsidiaries in Canada,
United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure, Windows Server,
Windows Vista, and the Windows start button are trademarks or registered trademarks of Microsoft
Corporation or its subsidiaries in Canada, United States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered trademarks of Red Hat, Inc.
or its subsidiaries in Canada, United States and/or other countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in Canada, United States
and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in Canada, United
States and/or other countries.

All other trademarks are trademarks of their respective owners.

	About This Guide
	Variables Used in this Document
	Table of Contents

	Introducing Simba Client/Server
	Deployment Options
	The Modern Server-based DBMS
	SimbaServer Solutions
	SimbaClient/Server Architecture

	Example: ODBC Client/Server Deployment
	Build the Quickstart Connector as a SimbaServer
	Configure the Server
	Configure a DSN for the SimbaClient
	Test the Client/Server Deployment

	Working with Simba Client/Server
	Development Strategy
	Test Strategy

	Building SimbaServer
	Building SimbaServer on Windows
	Building SimbaServer on Linux, Unix, and macOS

	Configure SimbaServer as a Windows Service
	Troubleshooting

	Installing SimbaClient/Server
	Gather the Required Files
	SimbaServer Required Files
	SimbaClient for ODBC Required Files
	SimbaClient for JDBC Required Files
	Visual C++ ODBC Redistributable Files
	Installing SimbaServer on Windows
	Installing SimbaClient for ODBC
	Installing SimbaClient for JDBC
	Testing the Client/Server Connection

	Configuring SimbaServer
	Command Line Configuration
	Configuring SimbaServer on Windows
	Configuring SimbaServer on Linux, Unix, and macOS
	SimbaServer Configuration Properties
	Auto-Reconnect (ODBC only)

	Configuring SimbaClient for ODBC
	Configuring SimbaClient for ODBC on Windows
	Configuring SimbaClient for ODBC on Linux, Unix, and macOS
	SimbaClient for ODBC Configuration Properties

	Configuring SimbaClient for JDBC
	Connection URL
	Linking to the connector class
	SimbaClient for JDBC Configuration Properties

	Configuring Secure Sockets Layer (SSL)
	Turning On SSL
	Using SSL Certificates
	Using a Trusted Key Store
	Configuration Properties for SSL
	Creating a Trusted Key Store for JDBC Client
	Generating a Certificate Authority (CA) Certificate for Self-Signing
	Generating an SSL Certificate with Verisign
	Distributing SSL Certificates

	Setting Properties to Control Logging
	Example: Logging Properties for the QuickStart SimbaServer and ODBC Client

	Contact Us
	Kerberos Authentication Support
	Example: Configuring Kerberos for C++ Servers
	Example: Configuring Kerberos For Java DSII Connectors
	Configuration Properties for Integrated Security

	Frequently Asked Questions
	Third-Party Trademarks

